Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33500, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027591

RESUMO

Arthrospira maxima is a microalga that has been collected in Lake Texcoco in the Valley of Mexico since pre-Hispanic times and has been a traditional food source due to its high biomass production and protein content (50-60 %), making it promising for protein extraction. In this context, a protein isolate was obtained from powdered biomass of Arthrospira maxima (PbAm) by alkaline solubilization (pH 11) and isoelectric precipitation (pH 4.2). Arthrospira maxima protein isolate (AmPI) presented higher protein content (82.58 %) and total amino acids compared to PbAm. Functional properties of AmPI were evaluated in comparison with PbAm and soy protein isolate (SPI). Protein extraction resulted in a significant increase in protein solubility (PS) and foaming capacity (FC) of up to 87.78 % and 238.10 %, respectively. Emulsifying capacity (EC) of AmPI was superior to that of PbAm and SPI in pH range 5-7. Inclusion of AmPI as a partial substitute for SPI in the formulation of meat sausages was evaluated by implementing four treatments: T1 (15 % AmPI, 85 % SPI), T2 (10 % AmPI, 90 % SPI), T3 (5 % AmPI, 95 % SPI) and T4 (0 % AmPI, 100 % SPI). Although the texture attributes remained unchanged, a significant reduction in color parameters was observed as the concentration of AmPI increased. An inclusion of 15 % AmPI significantly enhanced the nutritional quality of meat sausages. Results highlight the excellent properties of AmPI, confirming Arthrospira maxima as a promising protein source in the food industry.

2.
Front Nutr ; 11: 1353530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699548

RESUMO

Consumer demand for healthier confectionery products has prompted the confectionery industry to create products that are reduced in sugar content and supplemented with vitamins, antioxidants or biological elements beneficial to health. The aim of this study was to develop marshmallows enriched with Apis mellifera honey and Lactobacillus rhamnosus and to evaluate the effect of honey concentration and gelatin bloom degrees on marshmallow properties. A completely randomized design with a factorial structure was applied with different honey concentrations (0, 50 and 75%) and at different gelatin bloom degrees (265, 300 and 315 bloom degrees); moreover, the physicochemical properties, total phenol content and antioxidant activity of the marshmallow were studied, as well as the viability of the probiotic. The physicochemical properties of the marshmallows were found to be adequate and showed good stability over time. The concentration of honey and gelatin bloom degrees did not significantly affect probiotic viability. The density of the marshmallows decreased as the percentage of honey increased. Additionally, the pH was lower at higher honey concentrations. The marshmallow with 75% honey and 265 bloom degrees had a higher °Brix value. The honey treatments exhibited higher levels of total antioxidant activity and total phenolic compounds than the sugar-only marshmallows. However, the bloom degrees did not have a significant impact on the antioxidant activity and total phenolic compound content. Although the probiotics did not reach the minimum viability needed, their use as paraprobiotics can be considered.

3.
Dose Response ; 19(4): 15593258211044576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840539

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. METHODS: Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. RESULTS: The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. CONCLUSION: As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.

4.
Food Sci Nutr ; 8(8): 4308-4319, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884711

RESUMO

The aim of this study was to develop an edible alginate-based film produced with turmeric (EFT), as an active compound, and evaluate its antioxidant capacity for application in fresh pork loin, beef loin, and chicken breast. The EFT was characterized by barrier parameters, color, and mechanical, structural, and antioxidant properties. Meat samples with and without EFT were stored at 4°C and analyzed at 2-day intervals. The meat samples with EFT showed significant differences (p < .05) in color (CIE L*a*b*) and exhibited lower TBARS values compared with those without EFT. The addition of turmeric in the film, besides affecting its physicochemical and structural properties, contributed an important antioxidant effect for the meat.

5.
Front Plant Sci ; 8: 73, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261224

RESUMO

Aluminum (Al) is a beneficial element for some plant species, especially when used at low concentrations. Though some transcription factors are induced by exposure to this element, no data indicate that Al regulates the expression of NAC genes in rice. In this study we tested the effect of applying 200 µM Al on growth, chlorophyll, amino acids, sugars, macronutrient concentration and regulation of NAC transcription factors gene expression in 24-day-old plants of four rice (Oryza sativa ssp. indica) cultivars: Cotaxtla, Tres Ríos, Huimanguillo and Temporalero, grown hydroponically under greenhouse conditions. Twenty days after treatment, we observed that Al enhanced growth in the four cultivars studied. On average, plants grown in the presence of Al produced 140% more root dry biomass and were 30% taller than control plants. Cotaxtla and Temporalero showed double the root length, while Huimanguillo and Cotaxtla had three times more root fresh biomass and 2.5 times more root dry biomass. Huimanguillo plants showed 1.5 times more shoot height, while Cotaxtla had almost double the root dry biomass. With the exception of Tres Ríos, the rest of the cultivars had almost double the chlorophyll concentration when treated with Al, whereas amino acid and proline concentrations were not affected by Al. Sugar concentration was also increased in plants treated with Al, almost 11-fold in comparison to the control. Furthermore, we observed a synergic response of Al application on P and K concentration in roots, and on Mg concentration in shoots. Twenty-four hours after Al treatment, NAC transcription factors gene expression was measured in roots by quantitative RT-PCR. Of the 57 NAC transcription factors genes primer-pairs tested, we could distinguish that 44% (25 genes) showed different expression patterns among rice cultivars, with most of the genes induced in Cotaxtla and Temporalero plants. Of the 25 transcription factors up-regulated, those showing differential expression mostly belonged to the NAM subfamily (56%). We conclude that Al improves growth, increases sugar concentration, P and K concentrations in roots, and Mg concentration in shoots, and report, for the first time, that Al differentially regulates the expression of NAC transcription factors in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA