Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Biotechnol ; 14(6): 2385-2402, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171015

RESUMO

Lignin-based aromatics are attractive raw materials to derive medium-chain length poly(3-hydroxyalkanoates) (mcl-PHAs), biodegradable polymers of commercial value. So far, this conversion has exclusively used the ortho-cleavage route of Pseudomonas putida KT2440, which results in the secretion of toxic intermediates and limited performance. Pseudomonas putida H exhibits the ortho- and the meta-cleavage pathways where the latter appears promising because it stoichiometrically yields higher levels of acetyl-CoA. Here, we created a double-mutant H-ΔcatAΔA2 that utilizes the meta route exclusively and synthesized 30% more PHA on benzoate than the parental strain but suffered from catechol accumulation. The single deletion of the catA2 gene in the H strain provoked a slight attenuation on the enzymatic capacity of the ortho route (25%) and activation of the meta route by nearly 8-fold, producing twice as much mcl-PHAs compared to the wild type. Inline, the mutant H-ΔcatA2 showed a 2-fold increase in the intracellular malonyl-CoA abundance - the main precursor for mcl-PHAs synthesis. As inferred from flux simulation and enzyme activity assays, the superior performance of H-ΔcatA2 benefited from reduced flux through the TCA cycle and malic enzyme and diminished by-product formation. In a benzoate-based fed-batch, P. putida H-ΔcatA2 achieved a PHA titre of 6.1 g l-1 and a volumetric productivity of 1.8 g l-1 day-1 . Using Kraft lignin hydrolysate as feedstock, the engineered strain formed 1.4 g l- 1 PHA. The balancing of carbon flux between the parallel catechol-degrading routes emerges as an important strategy to prevent intermediate accumulation and elevate mcl-PHA production in P. putida H and, as shown here, sets the next level to derive this sustainable biopolymer from lignin hydrolysates and aromatics.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Benzoatos , Carbono , Ciclo do Carbono , Lignina , Pseudomonas putida/genética
2.
Sci Rep ; 7(1): 4373, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663596

RESUMO

Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.


Assuntos
Biopolímeros/biossíntese , Muramidase/metabolismo , Pseudomonas putida/metabolismo , Biocombustíveis , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Ácidos Graxos/biossíntese , Microbiologia Industrial , Plasmídeos/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA