Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Pharmacol ; 14: 1284586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026993

RESUMO

Background and purpose: In this study, we aimed to elucidate the action mechanisms of propofol, particularly those underlying propofol-induced protein kinase C (PKC) translocation. Experimental approach: Various PKCs fused with green fluorescent protein (PKC-GFP) or other GFP-fused proteins were expressed in HeLa cells, and their propofol-induced dynamics were observed using confocal laser scanning microscopy. Propofol-induced PKC activation in cells was estimated using the C kinase activity receptor (CKAR), an indicator of intracellular PKC activation. We also examined PKC translocation using isomers and derivatives of propofol to identify the crucial structural motifs involved in this process. Key results: Propofol persistently translocated PKCα conventional PKCs and PKCδ from novel PKCs (nPKCs) to the plasma membrane (PM). Propofol translocated PKCδ and PKCη of nPKCs to the Golgi apparatus and endoplasmic reticulum, respectively. Propofol also induced the nuclear translocation of PKCζ of atypical PKCs or proteins other than PKCs, such that the protein concentration inside and outside the nucleus became uniform. CKAR analysis revealed that propofol activated PKC in the PM and Golgi apparatus. Moreover, tests using isomers and derivatives of propofol predicted that the structural motifs important for the induction of PKC and nuclear translocation are different. Conclusion and implications: Propofol induced the subtype-specific intracellular translocation of PKCs and activated PKCs. Additionally, propofol induced the nuclear translocation of PKCs and other proteins, probably by altering the permeability of the nuclear envelope. Interestingly, propofol-induced PKC and nuclear translocation may occur via different mechanisms. Our findings provide insights into the action mechanisms of propofol.

2.
J Pharmacol Sci ; 153(1): 55-67, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524455

RESUMO

Microglial removal of dying cells plays a beneficial role in maintaining homeostasis in the CNS, whereas under some pathological conditions, inflammatory microglia can cause excessive clearance, leading to neuronal death. However, the mechanisms underlying dying cell removal by inflammatory microglia remain poorly understood. In this study, we performed live imaging to examine the purinergic regulation of dying cell removal by inflammatory activated microglia. Lipopolysaccharide (LPS) stimulation induces rapid death of primary rat microglia, and the surviving microglia actively remove dying cells. The nonselective P2 receptor antagonist, suramin, inhibited dying cell removal to the same degree as that of the selective P2Y2 antagonist, AR-C118925. This inhibition was more potent in LPS-stimulated microglia than in non-stimulated ones. LPS stimulation elicited distribution of the P2Y2 receptor on the leading edge of the plasma membrane and then induced drastic upregulation of P2Y2 receptor mRNA expression in microglia. LPS stimulation caused upregulation of the dying cell-sensing inflammatory Axl phagocytic receptor, which was suppressed by blocking the P2Y2 receptor and its downstream signaling effector, proline-rich tyrosine kinase (Pyk2). Together, these results indicate that inflammatory stimuli may activate the P2Y2 receptor, thereby mediating dying cell removal, at least partially, through upregulating phagocytic Axl in microglia.


Assuntos
Lipopolissacarídeos , Microglia , Ratos , Animais , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteínas Tirosina Quinases/metabolismo , Apoptose
3.
Eur J Pharmacol ; 955: 175806, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230321

RESUMO

Propofol is widely used for general anesthesia and sedation; however, the mechanisms of its anesthetic and adverse effects are not fully understood. We have previously shown that propofol activates protein kinase C (PKC) and induces its translocation in a subtype-specific manner. The purpose of this study was to identify the PKC domains involved in propofol-induced PKC translocation. The regulatory domains of PKC consist of C1 and C2 domains, and the C1 domain is subdivided into the C1A and C1B subdomains. Mutant PKCα and PKCδ with each domain deleted were fused with green fluorescent protein (GFP) and expressed in HeLa cells. Propofol-induced PKC translocation was observed by time-lapse imaging using a fluorescence microscope. The results showed that persistent propofol-induced PKC translocation to the plasma membrane was abolished by the deletion of both C1 and C2 domains in PKCα and by the deletion of the C1B domain in PKCδ. Therefore, propofol-induced PKC translocation involves the C1 and C2 domains of PKCα and the C1B domain of PKCδ. We also found that treatment with calphostin C, a C1 domain inhibitor, abolished propofol-induced PKCδ translocation. In addition, calphostin C inhibited the propofol-induced phosphorylation of endothelial nitric oxide synthase (eNOS). These results suggest that it may be possible to modulate the exertion of propofol effects by regulating the PKC domains involved in propofol-induced PKC translocation.


Assuntos
Propofol , Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo , Propofol/farmacologia , Células HeLa , Isoenzimas/metabolismo , Transporte Proteico
4.
Biochem Biophys Res Commun ; 662: 58-65, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099811

RESUMO

The neurotransmitter serotonin (5-HT) is transported back into serotonergic neurons by the serotonin transporter (SERT). SERT is a main target of antidepressants, and much effort has therefore focused on finding relationships between SERT and depression. However, it is not fully understood how SERT is regulated at the cellular level. Here, we report post-translational regulation of SERT by S-palmitoylation, in which palmitate is covalently attached to cysteine residues of proteins. Using AD293 cells (a human embryonic kidney 293-derived cell line with improved cell adherence) transiently transfected with FLAG-tagged human SERT, we observed S-palmitoylation of immature SERT containing high-mannose type N-glycans or no N-glycan, which is presumed to be localized in the early secretory pathway, such as the endoplasmic reticulum. Mutational analysis by alanine substitutions shows that S-palmitoylation of immature SERT occurs at least at Cys-147 and Cys-155, juxtamembrane cysteine residues within the first intracellular loop. Furthermore, mutation of Cys-147 reduced cellular uptake of a fluorescent SERT substrate that mimics 5-HT without decreasing SERT on the cell surface. On the other hand, combined mutation of Cys-147 and Cys-155 inhibited SERT surface expression and reduced the uptake of the 5-HT mimic. Thus, S-palmitoylation of Cys-147 and Cys-155 is important for both the cell surface expression and 5-HT uptake capacity of SERT. Given the importance of S-palmitoylation in brain homeostasis, further investigation of SERT S-palmitoylation could provide new insights into the treatment of depression.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Lipoilação , Cisteína/metabolismo , Membrana Celular/metabolismo
5.
Neurobiol Dis ; 172: 105811, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809764

RESUMO

Glaucoma is an optic neuropathy and is currently one of the most common diseases that leads to irreversible blindness. The axonal degeneration that occurs before retinal ganglion neuronal loss is suggested to be involved in the pathogenesis of glaucoma. G protein-coupled receptor 3 (GPR3) belongs to the class A rhodopsin-type GPCR family and is highly expressed in various neurons. GPR3 is unique in its ability to constitutively activate the Gαs protein without a ligand, which elevates the basal intracellular cAMP level. Our earlier reports suggested that GPR3 enhances both neurite outgrowth and neuronal survival. However, the potential role of GPR3 in axonal regeneration after neuronal injury has not been elucidated. Herein, we investigated retinal GPR3 expression and its possible involvement in axonal regeneration after retinal injury in mice. GPR3 was relatively highly expressed in retinal ganglion cells (RGCs). Surprisingly, RGCs in GPR3 knockout mice were vulnerable to neural death during aging without affecting high intraocular pressure (IOP) and under ischemic conditions. Primary cultured neurons from the retina showed that GPR3 expression was correlated with neurite outgrowth and neuronal survival. Evaluation of the effect of GPR3 on axonal regeneration using GPR3 knockout mice revealed that GPR3 in RGCs participates in axonal regeneration after optic nerve crush (ONC) under zymosan stimulation. In addition, regenerating axons were further stimulated when GPR3 was upregulated in RGCs, and the effect was further augmented when combined with zymosan treatment. These results suggest that GPR3 expression in RGCs helps maintain neuronal survival and accelerates axonal regeneration after ONC in mice.


Assuntos
Glaucoma , Traumatismos do Nervo Óptico , Animais , Axônios/patologia , Glaucoma/metabolismo , Camundongos , Camundongos Knockout , Compressão Nervosa , Regeneração Nervosa/fisiologia , Nervo Óptico , Traumatismos do Nervo Óptico/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Ganglionares da Retina/metabolismo , Zimosan/metabolismo , Zimosan/farmacologia
6.
J Pharmacol Sci ; 148(3): 307-314, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35177210

RESUMO

G protein-coupled receptor 3 (GPR3) constitutively activates Gαs proteins without any ligands and is predominantly expressed in neurons. Since the expression and physiological role of GPR3 in immune cells is still unknown, we examined the possible role of GPR3 in T lymphocytes. The expression of GPR3 was upregulated 2 h after phorbol 12-myristate 13-acetate (PMA)/ionomycin stimulation and was sustained in Jurkat cells, a human T lymphocyte cell line. In addition, the expression of nuclear receptor 4 group A member 2 (NR4A2) was highly modulated by GPR3 expression. Additionally, GPR3 expression was linked with the transcriptional promoter activity of NR4A in Jurkat cells. In mouse CD4+ T cells, transient GPR3 expression was induced immediately after the antigen receptor stimulation. However, the expression of NR4A2 was not modulated in CD4+ T cells from GPR3-knockout mice after stimulation, and the population of Treg cells in thymocytes and splenocytes was not affected by GPR3 knockout. By contrast, spontaneous effector activation in both CD4+ T cells and CD8+ T cells was observed in GPR3-knockout mice. In summary, GPR3 is immediately induced by T cell stimulation and play an important role in the suppression of effector T cell activation.


Assuntos
Ativação Linfocitária/genética , Receptores Acoplados a Proteínas G/fisiologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Cromograninas/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Camundongos Knockout , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T/metabolismo
7.
Mol Cell Neurosci ; 118: 103691, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871769

RESUMO

During neuronal development, immature neurons extend neurites and subsequently polarize to form an axon and dendrites. We have previously reported that G protein-coupled receptor 3 (GPR3) levels increase during neuronal development, and that GPR3 has functions in neurite outgrowth and neuronal differentiation in cerebellar granular neurons. Moreover, GPR3 is transported and concentrated at the tips of neurite, thereby contributing to the local activation of protein kinase A (PKA). However, the signaling pathways for GPR3-mediated neurite outgrowth and its subsequent effects on neuronal polarization have not yet been elucidated. We therefore analyzed the signaling pathways related to GPR3-mediated neurite outgrowth, and also focused on the possible roles of GPR3 in axon polarization. We demonstrated that, in cerebellar granular neurons, GPR3-mediated neurite outgrowth was mediated by multiple signaling pathways, including those of PKA, extracellular signal-regulated kinases (ERKs), and most strongly phosphatidylinositol 3-kinase (PI3K). In addition, the GPR3-mediated activation of neurite outgrowth was associated with G protein-coupled receptor kinase 2 (GRK2)-mediated signaling and phosphorylation of the C-terminus serine/threonine residues of GPR3, which affected downstream protein kinase B (Akt) signaling. We further demonstrated that GPR3 was transiently increased early in the development of rodent hippocampal neurons. It was subsequently concentrated at the tip of the longest neurite, and was thus associated with accelerated polarity formation in a PI3K-dependent manner in rat hippocampal neurons. In addition, GPR3 knockout in mouse hippocampal neurons led to delayed neuronal polarity formation, thereby affecting the dephosphorylation of collapsing response mediator protein 2 (CRMP2), which is downstream of the PI3K signaling pathway. Taken together, these findings suggest that the intrinsic expression of GPR3 in differentiated neurons constitutively activates PI3K-mediated signaling pathway predominantly, thus accelerating neurite outgrowth and further augmenting polarity formation in primary cultured neurons.


Assuntos
Neurônios , Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Neuritos/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
8.
J Pharmacol Sci ; 148(1): 187-195, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924125

RESUMO

Flurbiprofen, a nonsteroidal anti-inflammatory drug, reportedly exhibits chemical chaperone activity. Herein, we investigated the role of flurbiprofen in regulating serotonin transporter (SERT) function via membrane trafficking. We used COS-7 cells transiently expressing wild-type (WT) SERT or a C-terminus-deleted mutant of SERT (SERTΔCT), a misfolded protein. Flurbiprofen treatment reduced the expression of immaturely glycosylated SERT and enhanced the expression of maturely glycosylated SERT. In addition, we observed increased serotonin uptake in SERT-expressing cells. These results suggest that flurbiprofen modulates SERT function by promoting membrane trafficking. In SERTΔCT-expressing cells, flurbiprofen reduced the protein expression and uptake activity of SERTΔCT. Furthermore, flurbiprofen inhibited the formation of SERTΔCT aggregates. Studies using flurbiprofen enantiomers suggested that these effects of flurbiprofen on SERT were not mediated via cyclooxygenase inhibition. The levels of GRP78/BiP, an endoplasmic reticulum (ER) stress marker, were assessed to elucidate whether flurbiprofen can ameliorate SERTΔCT-induced ER stress. Interestingly, flurbiprofen induced GRP78/BiP expression only under ER stress conditions and not under steady-state conditions. In HRD1 E3 ubiquitin ligase knockdown cells, flurbiprofen affected the ER-associated degradation system. Collectively, the findings suggest that flurbiprofen may function as an inducer of molecular chaperones, in addition to functioning as a chemical chaperone.


Assuntos
Anti-Inflamatórios não Esteroides , Flurbiprofeno/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Chaperonas Moleculares , Mutação , Dobramento de Proteína , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Glicosilação , Ubiquitina-Proteína Ligases
9.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915857

RESUMO

Stroke is the second leading cause of death worldwide. Treatment options for ischemic stroke are limited, and the development of new therapeutic agents or combined therapies is imperative. Growing evidence suggests that metformin treatment, due to its anti-inflammatory action, exerts a neuroprotective effect against ischemia/reperfusion-induced brain damage. Experimental assessment has typically been performed in models of cerebral transient ischemia followed by long-term reperfusion. The aim of this study was to evaluate the neuroprotective effect of metformin treatment after permanent middle cerebral artery occlusion (pMCAO) without reperfusion in rats. Neurological deficits were assessed using the Longa scale, which offers a graded scale on body movement following pMCAO. Both infarct size and brain oedema area were measured by staining with 2,3,5-triphenyltetrazolium chloride. The number of neurons and total and activated microglia, as well as interleukin 10 (IL-10) production, in brain sections were evaluated by immunohistochemical staining. Our results show that metformin treatment improves the neurological state and reduces infarct size after 120 h of pMCAO. Metformin also prevents neuronal loss in the ischemic cortex but not in the striatum after 48 h of pMCAO. Moreover, post-stroke treatment with metformin significantly decreases the number of total and activated microglia at 48 h. The anti-inflammatory effect of metformin is associated with increased IL-10 production at 48 h after pMCAO. The results of the present study suggest that post-stroke treatment with metformin exerts anti-inflammatory and neuroprotective effects in a pMCAO model.

10.
J Pharmacol Sci ; 145(4): 297-307, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33712280

RESUMO

Herein, we investigated the functional association of the serotonin transporter (SERT) with syntaxin-3 (STX3). We first overexpressed SERT and STX3 in various cells and examined their interaction, localization, and functional association. Immunoprecipitation studies revealed that STX3 interacted with SERT when expressed in COS-7 cells. Immunocytochemical studies revealed that SERT and STX3 were colocalized in the endoplasmic reticulum (ER) and Golgi apparatus. STX3 overexpression significantly reduced the uptake activity of SERT by attenuating its plasma membrane expression, suggesting that overexpressed STX3 anchors SERT in the ER and Golgi apparatus. STX3 knockdown did not affect the uptake activity of SERT but altered its glycosylation state. To elucidate the association of STX3 with SERT under physiological conditions, rather than overexpressing cells, we investigated this interaction in polarized Caco-2 cells, which endogenously express both proteins. Immunocytochemical studies revealed that SERT and STX3 were localized in microvilli-like structures at the apical plasma membrane. STX3 knockdown marginally but significantly decreased the serotonin uptake activity of Caco-2 cells, suggesting that STX3 positively regulates SERT function in Caco-2 cells, as opposed to SERT regulation by STX3 in overexpressing cells. Collectively, STX3 may colocalize with SERT during SERT membrane trafficking and regulate SERT function in an STX3-expressing lesion-dependent manner.


Assuntos
Epistasia Genética/genética , Expressão Gênica/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Microvilosidades/metabolismo , Proteínas Qa-SNARE/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
11.
Biochem Biophys Res Commun ; 534: 583-589, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243462

RESUMO

To elucidate the regulation of serotonin transporter (SERT) function via its membrane trafficking, we investigated the involvement of the ubiquitin E3 ligase HRD1 (HMG-CoA reductase degradation protein), which participates in endoplasmic reticulum (ER)-associated degradation (ERAD), in the functional regulation of SERT. Cells transiently expressing wild-type SERT or a SERT C-terminal deletion mutant (SERTΔCT), a SERT protein predicted to be misfolded, were used for experiments. Studies using HRD1-overexpressing or HRD1-knockdown cells demonstrated that HRD1 is involved in SERT proteolysis. Overexpression of HRD1 promoted SERT ubiquitination, the effect of which was augmented by treatment with the proteasome inhibitor MG132. Immunoprecipitation studies revealed that HRD1 interacts with SERT in the presence of MG132. In addition, HRD1 was intracellularly colocalized with SERT, especially with aggregates of SERTΔCT in the ER. HRD1 also affected SERT uptake activity in accordance with the expression levels of the SERT protein. These results suggest that HRD1 contributes to the membrane trafficking and functional regulation of SERT through its involvement in ERAD-mediated SERT degradation.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Degradação Associada com o Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Leupeptinas/farmacologia , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
12.
Brain Res ; 1750: 147166, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075309

RESUMO

The G-protein coupled receptor 3 (GPR3), a member of the class A rhodopsin-type GPR family, constitutively activates Gαs proteins without any ligands. Although there have been several reports concerning the functions of GPR3 in neurons, the physiological roles of GPR3 have not been fully elucidated. To address this issue, we analyzed GPR3 distribution in detail using fluorescence-based X-gal staining in heterozygous GPR3 knockout/LacZ knock-in mice, and further investigated the types of GPR3-expressing neurons using fluorescent double labeling with various EF-hand Ca2+-binding proteins. In addition to the previously reported GPR3-expressing areas, we identified GPR3 expression in the basal ganglia and in many nuclei of the cranial nerves, in regions related to olfactory, auditory, emotional, and motor functions. In addition, GPR3 was not only observed in excitatory neurons in layer V of the cerebral cortex, the CA2 region of the hippocampus, and the lateral nucleus of the thalamus, but also in γ-aminobutyric acid (GABA)-ergic interneurons in the cortex, hippocampus, thalamus, striatum, and cerebellum. GPR3 was frequently co-expressed with neuronal Ca2+-binding protein 2 (NECAB2) in neurons in various regions of the central nervous system, especially in the hippocampal CA2, medial habenular nucleus, lateral thalamic nucleus, dorsolateral striatum, brainstem, and spinal cord anterior horn. Furthermore, GPR3 also co-localized with NECAB2 at the tips of neurites in differentiated PC12 cells. These results suggest that GPR3 and NECAB2 are highly co-expressed in specific neurons, and that GPR3 may modulate Ca2+ signaling by interacting with NECAB2 in specific areas of the central nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Olho/metabolismo , Corantes Fluorescentes , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Técnicas de Introdução de Genes , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Transcriptoma
13.
PLoS One ; 15(11): e0242349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253222

RESUMO

The pathway from the medial habenular nucleus to the interpeduncular nucleus, in which nicotinic acetylcholine receptor (nAChR) including the α3 and α5 subunits (α3 * and α5 * nAChRs) are expressed, is implicated in nicotine dependence. We investigated whether α3 * and α5 * nAChRs are regulated by cAMP using SH-SY5Y cells to clarify the significance of these receptors in nicotine dependence. We analyzed the nicotine-induced elevation of intracellular Ca2+ ([Ca2+]i). Nicotine induces a concentration-dependent increase in [Ca2+]i. The elimination of Ca2+ from extracellular fluid or intracellular stores demonstrated that the nicotine-induced [Ca2+]i elevation was due to extracellular influx and intracellular mobilization. The effects of tubocurarine on nicotine-induced [Ca2+]i elevation and current suggest that intracellular mobilization is caused by plasma membrane-permeating nicotine. The inhibition of α3 *, α5 *, α7 nAChR and voltage-gated Ca2+ channels by using siRNAs and selective antagonists revealed the involvement of these nAChR subunits and channels in nicotine-induced [Ca2+]i elevation. To distinguish and characterize the α3 * and α5 * nAChR-mediated Ca2+ influx, we measured the [Ca2+]i elevation induced by nonmembrane-permeating acetylcholine when muscarinic receptors, α7nAChR and Ca2+ channels were blocked. Under this condition, the [Ca2+]i elevation was significantly inhibited with a 48-h treatment of dibutyryl cAMP, which was accompanied by the downregulation of α3 and ß4 mRNA. These findings suggest that α3 * and α5 * nAChR-mediated Ca2+ influx is possibly regulated by cAMP at the transcriptional level.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Linhagem Celular , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
14.
Eur J Pharmacol ; 884: 173303, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32681942

RESUMO

Propofol, most frequently used as a general anesthetic due to its versatility and short-acting characteristics, is thought to exert its anesthetic actions via GABAA receptors; however, the precise mechanisms of its adverse action including angialgia remain unclear. We examined the propofol-induced elevation of intracellular calcium and morphological changes in intracellular organelles using SHSY-5Y neuroblastoma cells, COS-7 cells, HEK293 cells, and HUVECs loaded with fluorescent dyes for live imaging. Although propofol (>50 µM) increased intracellular calcium in a dose-dependent manner in these cells, it was not influenced by the elimination of extracellular calcium. The calcium elevation was abolished when intracellular or intraendoplasmic reticulum (ER) calcium was depleted by BAPTA-AM or thapsigargin, respectively, suggesting that calcium was mobilized from the ER. Studies using U-73122, xestospongin C, and dantrolene revealed that propofol-induced calcium elevation was not mediated by G-protein coupled receptors, IP3 receptors, or ryanodine receptors. We performed live imaging of the ER, mitochondria and Golgi apparatus during propofol stimulation using fluorescent dyes. Concomitant with the calcium elevation, the structure of the ER and mitochondria was fragmented and aggregated, and these changes were not reversed during the observation period, suggesting that propofol-induced calcium elevation occurs due to calcium leakage from these organelles. Although the concentration of propofol used in this experiment was greater than that used clinically (30 µM), it is possible that the concentration exceeds 30 µM at the site where propofol is injected, leading the idea that these phenomena might relate to the various propofol-induced adverse effects including angialgia.


Assuntos
Anestésicos Intravenosos/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Propofol/toxicidade , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fatores de Tempo
15.
Mol Cell Neurosci ; 98: 46-53, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31158466

RESUMO

Spinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disorder characterized by cerebellar ataxia with myoclonus, dystonia, spasticity, and rigidity. Although missense mutations and a deletion mutation have been found in the protein kinase C gamma (PRKCG) gene encoding protein kinase C γ (PKCγ) in SCA14 families, a nonsense mutation has not been reported. The patho-mechanisms underlying SCA14 remain poorly understood. However, gain-of-function mechanisms and loss-of-function mechanisms, but not dominant negative mechanisms, were reported the patho-mechanism of SCA14. We identified the c.226C>T mutation of PRKCG, which caused the p.R76X in PKCγ by whole-exome sequencing in patients presenting cerebellar atrophy with cognitive and hearing impairment. To investigate the patho-mechanism of our case, we studied aggregation formation, cell death, and PKC inhibitory effect by confocal microscopy, western blotting with cleaved caspase 3, and pSer PKC motif antibodies, respectively. PKCγ(R76X)-GFP have aggregations the same as wild-type (WT) PKCγ-GFP. The PKCγ(R76X)-GFP inhibited PKC phosphorylation activity more than GFP alone. It also induced more apoptosis in COS7 and SH-SY5Y cells compared to WT-PKCγ-GFP and GFP. We first reported SCA14 patients with p.R76X in PKCγ who have cerebellar atrophy with cognitive and hearing impairment. Our results suggest that a dominant negative mechanism due to truncated peptides produced by p.R76X may be at least partially responsible for the cerebellar atrophy.


Assuntos
Códon sem Sentido , Proteína Quinase C/genética , Ataxias Espinocerebelares/genética , Adulto , Animais , Apoptose , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Masculino , Proteína Quinase C/metabolismo , Ataxias Espinocerebelares/patologia
16.
Toxins (Basel) ; 11(3)2019 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857348

RESUMO

Comprehensive LC-MS and MS/MS analysis of the crude venom extract from the solitary eumenine wasp Eumenes micado revealed the component profile of this venom mostly consisted of small peptides. The major peptide components, eumenine mastoparan-EM1 (EMP-EM1: LKLMGIVKKVLGAL-NH2) and eumenine mastoparan-EM2 (EMP-EM2: LKLLGIVKKVLGAI-NH2), were purified and characterized by the conventional method. The sequences of these new peptides are homologous to mastoparans, the mast cell degranulating peptides from social wasp venoms; they are 14 amino acid residues in length, rich in hydrophobic and basic amino acids, and C-terminal amidated. Accordingly, these new peptides can belong to mastoparan peptides (in other words, linear cationic α-helical peptides). Indeed, the CD spectra of these new peptides showed predominantly α-helix conformation in TFE and SDS. In biological evaluation, both peptides exhibited potent antibacterial activity, moderate degranulation activity from rat peritoneal mast cells, and significant leishmanicidal activity, while they showed virtually no hemolytic activity on human or mouse erythrocytes. These results indicated that EMP-EM peptides rather strongly associated with bacterial cell membranes rather than mammalian cell membranes.


Assuntos
Anti-Infecciosos , Peptídeos e Proteínas de Sinalização Intercelular , Venenos de Vespas/química , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Leishmania major/efeitos dos fármacos , Leishmania major/crescimento & desenvolvimento , Mastócitos/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Venenos de Vespas/análise , Venenos de Vespas/farmacologia , Vespas
17.
J Pharmacol Sci ; 139(1): 29-36, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30522963

RESUMO

The serotonin transporter (SERT) is functionally regulated via membrane trafficking. Our previous studies have demonstrated that the SERT C-terminal deletion mutant (SERTΔCT) showed a robust decrease in its membrane trafficking and was retained in the endoplasmic reticulum (ER), suggesting that SERTΔCT is an unfolded protein that may cause ER stress. The Sigma-1 receptor (SigR1) has been reported to attenuate ER stress via its chaperone activity. In this study, we investigated the effects of SKF-10047, a prototype SigR1 agonist, on the membrane trafficking and uptake activity of SERT and SERTΔCT expressed in COS-7 cells. Twenty-four hours of SKF-10047 treatment (>200 µM) accelerated SERT membrane trafficking and robustly upregulated SERTΔCT activity. Interestingly, these effects of SKF-10047 on SERT functions were also found in cells in which SigR1 expression was knocked down by shRNA, suggesting that SKF-10047 exerted these effects on SERT via a mechanism independent of SigR1. A cDNA array study identified several candidate genes involved in the mechanism of action of SKF-10047. Among them, Syntaxin3, a member of the SNARE complex, was significantly upregulated by 48 h of SKF-10047 treatment. These results suggest that SKF-10047 is a candidate for ER stress relief.


Assuntos
Membrana Celular/efeitos dos fármacos , Fenazocina/análogos & derivados , Receptores sigma/agonistas , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Estresse do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Mutação , Fenazocina/farmacologia , Transporte Proteico , Receptores sigma/genética , Receptor Sigma-1
19.
J Pharmacol Sci ; 137(1): 20-29, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29699771

RESUMO

Propofol is the most commonly used anesthetic. Immunohistochemical studies have reported that propofol translocated protein kinase Cs (PKCs) in cardiomyocyte in a subtype-specific manner; however detailed features of the propofol-induced translocation of PKCs remain unknown. In this study, we performed real-time observation of propofol-induced PKC translocation in SH-SY5Y cells expressing PKCs fused with a fluorescent protein. Propofol unidirectionally translocated γPKC-GFP, a conventional PKC, and ζPKC-GFP, an atypical PKC, to the plasma membrane and nucleus, respectively, whereas the propofol-induced translocation of novel PKCs was diverse and subtype-specific among δPKC, εPKC and ηPKC. The propofol-induced translocation of εPKC-GFP was especially complicated and diverse, that is, 200 µM propofol first translocated εPKC-GFP to the perinuclear region. Thereafter, εPKC was translocated to the nucleus, followed by translocation to the plasma membrane. Analysis using a mutant εPKC in which the C1 domain was deleted demonstrated that the C1b domain of εPKC was indispensable for its translocation to the perinuclear region and plasma membrane, but not for its nuclear translocation. An in vitro kinase assay revealed that propofol increased the activities of the PKCs activities at the concentration that triggered the translocation. These results suggest that propofol could translocate PKCs to their appropriate target sites in a subtype-specific manner and concomitantly activated PKCs at these sites, contributing to its beneficial or adverse effects.


Assuntos
Anestésicos/farmacologia , Propofol/farmacologia , Proteína Quinase C/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteína Quinase C/química , Proteína Quinase C/classificação , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA