Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(208): 20230404, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37989229

RESUMO

Planktonic organisms feed while suspended in water using various hydrodynamic pumping strategies. Appendicularians are a unique group of plankton that use their tail to pump water over mucous mesh filters to concentrate food particles. As ubiquitous and often abundant members of planktonic ecosystems, they play a major role in oceanic food webs. Yet, we lack a complete understanding of the fluid flow that underpins their filtration. Using high-speed, high-resolution video and micro particle image velocimetry, we describe the kinematics and hydrodynamics of the tail in Oikopleura dioica in filtering and free-swimming postures. We show that sinusoidal waves of the tail generate peristaltic pumping within the tail chamber with fluid moving parallel to the tail when filtering. We find that the tail contacts attachment points along the tail chamber during each beat cycle, serving to seal the tail chamber and drive pumping. When we tested how the pump performs across environmentally relevant temperatures, we found that the amplitude of the tail was invariant but tail beat frequency increased threefold across three temperature treatments (5°C, 15°C and 25°C). Investigation into this unique pumping mechanism gives insight into the ecological success of appendicularians and provides inspiration for novel pump designs.


Assuntos
Ecossistema , Hidrodinâmica , Animais , Fenômenos Biomecânicos , Plâncton , Natação , Água , Cauda
2.
Biol Lett ; 18(4): 20210596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414224

RESUMO

Biodiversity assessments are critical for setting conservation priorities, understanding ecosystem function and establishing a baseline to monitor change. Surveys of marine biodiversity that rely almost entirely on sampling adult organisms underestimate diversity because they tend to be limited to habitat types and individuals that can be easily surveyed. Many marine animals have planktonic larvae that can be sampled from the water column at shallow depths. This life stage often is overlooked in surveys but can be used to relatively rapidly document diversity, especially for the many species that are rare or live cryptically as adults. Using DNA barcode data from samples of nemertean worms collected in three biogeographical regions-Northeastern Pacific, the Caribbean Sea and Eastern Tropical Pacific-we found that most species were collected as either benthic adults or planktonic larvae but seldom in both stages. Randomization tests show that this deficit of operational taxonomic units collected as both adults and larvae is extremely unlikely if larvae and adults were drawn from the same pool of species. This effect persists even in well-studied faunas. These results suggest that sampling planktonic larvae offers access to a different subset of species and thus significantly increases estimates of biodiversity compared to sampling adults alone. Spanish abstract is available in the electronic supplementary material.


Assuntos
Biodiversidade , Ecossistema , Animais , Região do Caribe , DNA , Código de Barras de DNA Taxonômico , Larva/genética
3.
Proc Biol Sci ; 286(1898): 20182524, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30836873

RESUMO

Animals vary widely in their ability to regenerate, suggesting that regenerative ability has a rich evolutionary history. However, our understanding of this history remains limited because regenerative ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We assessed ability to regenerate heads and tails either through our own experiments or from literature reports for 35 species of Nemertea spanning the diversity of the phylum, including representatives of 10 families and all three orders. We generated a phylogenetic framework using sequence data to reconstruct the evolutionary history of head and tail regenerative ability across the phylum and found that all evaluated species can remake a posterior end but surprisingly few could regenerate a complete head. Our analysis reconstructs a nemertean ancestor unable to regenerate a head and indicates independent gains of head regenerative ability in at least four separate lineages, with one of these gains taking place as recently as the last 10-15 Myr. Our study highlights nemerteans as a valuable group for studying evolution of regeneration and identifying mechanisms associated with repeated gains of regenerative ability.


Assuntos
Invertebrados/fisiologia , Regeneração , Animais , Evolução Biológica , Cabeça/fisiologia , Especificidade da Espécie
4.
Biol Bull ; 229(3): 265-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26695825

RESUMO

Unique to the phylum Nemertea, the pilidium is an unmistakable planktonic larva found in one group of nemerteans, the Pilidiophora. Inside the pilidium, the juvenile develops from a series of epidermal invaginations in the larval body, called imaginal discs. The discs grow and fuse around the larval gut over the course of weeks to months in the plankton. Once complete, the juvenile breaks free from the larval body in a catastrophic metamorphosis, and often devours the larva as its first meal. One third of nemertean species are expected to produce a pilidium, but the larvae are known for very few species; development from fertilization to metamorphosis has been described in only one species, Micrura alaskensis. Known pilidia include both planktotrophic and lecithotrophic forms, and otherwise exhibit great morphological diversity. Here, we describe the complete development in two lineiform species that are common to the northeast Pacific coast, Micrura wilsoni and Lineus sp. "red." Both species possess typical, cap-shaped planktotrophic pilidia, and the order of emergence of imaginal discs is similar to that which is described in M. alaskensis. The pilidium of Lineus sp. "red" resembles pilidia of several other species, such as Lineus flavescens, and potentially characterizes a pilidiophoran clade. M. wilsoni has relatively transparent oocytes and a pilidium with what appears to be a unique pattern of pigmentation. The adults of both species are more commonly observed in intertidal zones than their larvae are in the plankton.


Assuntos
Invertebrados/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Metamorfose Biológica
5.
Int J Dev Biol ; 58(6-8): 585-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25690972

RESUMO

Nemerteans, a phylum of marine lophotrochozoan worms, have a biphasic life history with benthic adults and planktonic larvae. Nemertean larval development is traditionally categorized into direct and indirect. Indirect development via a long-lived planktotrophic pilidium larva is thought to have evolved in one clade of nemerteans, the Pilidiophora, from an ancestor with a uniformly ciliated planuliform larva. Planuliform larvae in a member of a basal nemertean group, the Palaeonemertea, have been previously shown to possess a vestigial prototroch, homologous to the primary larval ciliated band in the trochophores of other spiralian phyla, such as annelids and mollusks. We review literature on nemertean larval development, and include our own unpublished observations. We highlight recent discoveries of numerous pilidiophoran species with lecithotrophic larvae. Some of these larvae superficially resemble uniformly ciliated planuliform larvae of other nemerteans. Others possess one or two transverse ciliary bands, which superficially resemble the prototroch and telotroch of some spiralian trochophores. We also summarize accumulating evidence for planktotrophic feeding by larvae of the order Hoplonemertea, which until now were considered to be lecithotrophic. We suggest that 1) non-feeding pilidiophoran larval forms are derived from a feeding pilidium; 2) such forms have likely evolved many times independently within the Pilidiophora; 3) any resemblance of such larvae to the trochophores of other spiralians is a result of convergence and that 4) the possibility of planktotrophy in hoplonemertean larvae may influence estimates of pelagic larval duration, dispersal, and population connectivity in this group.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/embriologia , Larva/crescimento & desenvolvimento , Animais , Evolução Biológica , Ingestão de Alimentos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA