Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(10): e57600, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671834

RESUMO

Adipocytes are critical regulators of metabolism and energy balance. While white adipocyte dysfunction is a hallmark of obesity-associated disorders, thermogenic adipocytes are linked to cardiometabolic health. As adipocytes dynamically adapt to environmental cues by functionally switching between white and thermogenic phenotypes, a molecular understanding of this plasticity could help improving metabolism. Here, we show that the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) is a human-specific regulator of adipocyte plasticity. Comparing transcriptional profiles of human adipose tissues and cultured adipocytes we discovered that AATBC was enriched in thermogenic conditions. Using primary and immortalized human adipocytes we found that AATBC enhanced the thermogenic phenotype, which was linked to increased respiration and a more fragmented mitochondrial network. Expression of AATBC in adipose tissue of mice led to lower plasma leptin levels. Interestingly, this association was also present in human subjects, as AATBC in adipose tissue was inversely correlated with plasma leptin levels, BMI, and other measures of metabolic health. In conclusion, AATBC is a novel obesity-linked regulator of adipocyte plasticity and mitochondrial function in humans.

2.
BMC Genomics ; 19(1): 794, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390616

RESUMO

BACKGROUND: Norepinephrine (NE) signaling has a key role in white adipose tissue (WAT) functions, including lipolysis, free fatty acid liberation and, under certain conditions, conversion of white into brite (brown-in-white) adipocytes. However, acute effects of NE stimulation have not been described at the transcriptional network level. RESULTS: We used RNA-seq to uncover a broad transcriptional response. The inference of protein-protein and protein-DNA interaction networks allowed us to identify a set of immediate-early genes (IEGs) with high betweenness, validating our approach and suggesting a hierarchical control of transcriptional regulation. In addition, we identified a transcriptional regulatory network with IEGs as master regulators, including HSF1 and NFIL3 as novel NE-induced IEG candidates. Moreover, a functional enrichment analysis and gene clustering into functional modules suggest a crosstalk between metabolic, signaling, and immune responses. CONCLUSIONS: Altogether, our network biology approach explores for the first time the immediate-early systems level response of human adipocytes to acute sympathetic activation, thereby providing a first network basis of early cell fate programs and crosstalks between metabolic and transcriptional networks required for proper WAT function.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Precoces , Norepinefrina/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Norepinefrina/farmacologia , Transdução de Sinais , Transcrição Gênica , Transcriptoma
3.
Molecules ; 23(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380804

RESUMO

Skin cancer is currently diagnosed as one in every three cancers. Melanoma, the most aggressive form of skin cancer, is responsible for 79% of skin cancer deaths and the incidence is rising faster than in any other solid tumor type. Previously, we have demonstrated that dimethylacrylshikonin (DMAS), isolated from the roots of Onosma paniculata (Boraginaceae), exhibited the lowest IC50 values against different tumor types out of several isolated shikonin derivatives. DMAS was especially cytotoxic towards melanoma cells and led to apoptosis and cell cycle arrest. In this study, we performed a comprehensive gene expression study to investigate the mechanism of action in more detail. Gene expression signature was compared to vehicle-treated WM164 control cells after 24 h of DMAS treatment; where 1192 distinct mRNAs could be identified as expressed in all replicates and 89 were at least 2-fold differentially expressed. DMAS favored catabolic processes and led in particular to p62 increase which is involved in cell growth, survival, and autophagy. More in-depth experiments revealed that DMAS led to autophagy, ROS generation, and loss of mitochondrial membrane potential in different melanoma cells. It has been reported that the induction of an autophagic cell death represents a highly effective approach in melanoma therapy.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Naftoquinonas/farmacologia , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
NPJ Aging Mech Dis ; 4: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675264

RESUMO

There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris, which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.

5.
BMC Cancer ; 16: 680, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558259

RESUMO

BACKGROUND: Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. METHODS: Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn's Multiple Comparison and T tests. Kaplan-Meier and log-rank tests were used to determine overall survival. RESULTS: Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. CONCLUSIONS: Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected.


Assuntos
Galectinas/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Humanos , Neoplasias do Colo do Útero/patologia
6.
PLoS One ; 8(6): e65433, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785426

RESUMO

It has recently begun to be considered that cancer is a systemic disease and that it must be studied at every level of complexity using many of the currently available approaches, including high-throughput technologies and bioinformatics. To achieve such understanding in cervical cancer, we collected information on gene, protein and phosphoprotein expression of the HeLa cell line and performed a comprehensive analysis of the different signaling pathways, transcription networks and metabolic events in which they participate. A total expression analysis by RNA-Seq of the HeLa cell line showed that 19,974 genes were transcribed. Of these, 3,360 were over-expressed, and 2,129 under-expressed when compared to the NHEK cell line. A protein-protein interaction network was derived from the over-expressed genes and used to identify central elements and, together with the analysis of over-represented transcription factor motifs, to predict active signaling and regulatory pathways. This was further validated by Metal-Oxide Affinity Chromatography (MOAC) and Tandem Mass Spectrometry (MS/MS) assays which retrieved phosphorylated proteins. The 14-3-3 family members emerge as important regulators in carcinogenesis and as possible clinical targets. We observed that the different over- and under-regulated pathways in cervical cancer could be interrelated through elements that participate in crosstalks, therefore belong to what we term "meta-pathways". Additionally, we highlighted the relations of each one of the differentially represented pathways to one or more of the ten hallmarks of cancer. These features could be maintained in many other types of cancer, regardless of mutations or genomic rearrangements, and favor their robustness, adaptations and the evasion of tissue control. Probably, this could explain why cancer cells are not eliminated by selective pressure and why therapy trials directed against molecular targets are not as effective as expected.


Assuntos
Biologia de Sistemas/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Humanos
7.
BMC Syst Biol ; 5: 96, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21696634

RESUMO

BACKGROUND: Cervical cancer is a major mortality factor in the female population. This neoplastic is an excellent model for studying the mechanisms involved in cancer maintenance, because the Human Papilloma Virus (HPV) is the etiology factor in most cases. With the purpose of characterizing the effects of malignant transformation in cellular activity, proteomic studies constitute a reliable way to monitor the biological alterations induced by this disease. In this contextual scheme, a systemic description that enables the identification of the common events between cell lines of different origins, is required to distinguish the essence of carcinogenesis. RESULTS: With this study, we sought to achieve a systemic perspective of the common proteomic profile of six cervical cancer cell lines, both positive and negative for HPV, and which differ from the profile corresponding to the non-tumourgenic cell line, HaCaT. Our objectives were to identify common cellular events participating in cancer maintenance, as well as the establishment of a pipeline to work with proteomic-derived results. We analyzed by means of 2D SDS-PAGE and MALDI-TOF mass spectrometry the protein extracts of six cervical cancer cell lines, from which we identified a consensus of 66 proteins. We call this group of proteins, the "central core of cervical cancer". Starting from this core set of proteins, we acquired a PPI network that pointed, through topological analysis, to some proteins that may well be playing a central role in the neoplastic process, such as 14-3-3ζ. In silico overrepresentation analysis of transcription factors pointed to the overexpression of c-Myc, Max and E2F1 as key transcription factors involved in orchestrating the neoplastic phenotype. CONCLUSIONS: Our findings show that there is a "central core of cervical cancer" protein expression pattern, and suggest that 14-3-3ζ is key to determine if the cell proliferates or dies. In addition, our bioinformatics analysis suggests that the neoplastic phenotype is governed by a non-canonical regulatory pathway.


Assuntos
Proteômica , Neoplasias do Colo do Útero/patologia , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Feminino , Perfilação da Expressão Gênica , Humanos , Peso Molecular , Mapeamento de Interação de Proteínas , Neoplasias do Colo do Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA