Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2(11): 4941-4952, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021494

RESUMO

In cellulo crystallization is a developing technique to provide crystals for protein structure determination, particularly for proteins that are difficult to prepare by in vitro crystallization. This method has a key advantage: it requires neither a protein purification step nor a crystallization step. However, there is still no systematic strategy for improving the technique of in cellulo crystallization because the process occurs spontaneously. Here we report a protocol to produce and extract in cellulo crystals of human lysosomal neuraminidase-1 (NEU1) in human cultured cells. Overexpression of NEU1 protein by the retransfection of cells pretransfected with neu1-overexpressing plasmid improved the efficiency of NEU1 crystallization. Microscopic analysis revealed that NEU1 proteins were not crystallized in the lysosome but in the endoplasmic reticulum (ER). Screening of the buffer conditions used to extract crystals from cells further improved the crystal yield. The optimal pH was 7.0, which corresponds to the pH in the ER. Use of a high-yield flask with a large surface area also yielded more crystals. These optimizations enabled us to execute a serial femtosecond crystallography experiment with a sufficient number of crystals to generate a complete data set. Optimization of the in cellulo crystallization method was thus shown to be possible.

2.
Philos Trans R Soc Lond B Biol Sci ; 369(1647): 20130497, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24914164

RESUMO

The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography.


Assuntos
Biologia/métodos , Cristalografia por Raios X/métodos , Elétrons , Lasers , Nanopartículas/química , Proteínas/química , Difração de Raios X/métodos , Animais , Biologia/tendências , Células CHO , Baratas , Cricetinae , Cricetulus , Humanos , Nanopartículas/ultraestrutura , Proteínas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA