Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
RSC Adv ; 14(3): 1833-1837, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38192310

RESUMO

Palmer amaranth (Amaranthus palmeri) is a pervasive and troublesome weed species that poses significant challenges to agriculture in the United States. Identifying the sex of Palmer amaranth plants is crucial for developing tailored control measures due to the distinct characteristics and reproductive strategies exhibited by male and female plants. Traditional methods for sex determination are expensive and time-consuming, but recent advancements in spectroscopic techniques offer new possibilities. This study explores the potential of portable Raman spectroscopy for determining the sex of mature Palmer amaranth plants in-field. Raman analysis of the plant leaves reveals spectral differences associated with nitrate salts, lipids, carotenoids, and terpenoids, allowing for high accuracy and reliable identification of the plant's sex; male plants had higher concentrations of these compounds compared to females. It was also found that male plants had higher concentrations of these compounds compared to the females. Raman spectra were analyzed using a machine learning tool, partial least squares discriminant analysis (PLS-DA), to generate accuracies of no less than 83.7% when elucidating sex from acquired spectra. These findings provide insights into the sex-specific characteristics of Palmer amaranth and suggest that Raman analysis, combined with PLS-DA, can be a promising, non-destructive, and efficient method for sex determination in field settings. This approach has implications for developing sex-specific management strategies to monitor and control this invasive weed in real-world environments, benefiting farmers, agronomists, researchers, and master gardeners.

2.
Andrology ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044754

RESUMO

BACKGROUND: Chronic preconception paternal alcohol use adversely modifies the sperm epigenome, inducing fetoplacental and craniofacial growth defects in the offspring of exposed males. A crucial outstanding question in the field of paternal epigenetic inheritance concerns the resilience of the male germline and its capacity to recover and correct sperm-inherited epigenetic errors after stressor withdrawal. OBJECTIVES: We set out to determine if measures of the sperm-inherited epigenetic program revert to match the control treatment 1 month after withdrawing the daily alcohol treatments. MATERIALS AND METHODS: Using a voluntary access model, we exposed C57BL/6J males to 6% or 10% alcohol for 10 weeks, withdrew the alcohol treatments for 4 weeks, and used RNA sequencing to examine gene expression patterns in the caput section of the epididymis. We then compared the abundance of sperm small RNA species between treatments. RESULTS: In the caput section of the epididymis, chronic alcohol exposure induced changes in the transcriptional control of genetic pathways related to the mitochondrial function, oxidative phosphorylation, and the generalized stress response (EIF2 signaling). Subsequent analysis identified region-specific, alcohol-induced changes in mitochondrial DNA copy number across the epididymis, which correlated with increases in the mitochondrial DNA content of alcohol-exposed sperm. Notably, in the corpus section of the epididymis, increases in mitochondrial DNA copy number persisted 1 month after alcohol cessation. Analysis of sperm noncoding RNAs between control and alcohol-exposed males 1 month after alcohol withdrawal revealed a ∼100-fold increase in mir-196a, a microRNA induced as part of the nuclear factor erythroid 2-related factor 2 (Nrf2)-driven cellular antioxidant response. DISCUSSION AND CONCLUSION: Our data reveal that alcohol-induced epididymal mitochondrial dysfunction and differences in sperm noncoding RNA content persist after alcohol withdrawal. Further, differences in mir-196a and sperm mitochondrial DNA copy number may serve as viable biomarkers of adverse alterations in the sperm-inherited epigenetic program.

3.
Sci Rep ; 13(1): 7063, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127736

RESUMO

Scalp hairs are readily present at most crime scenes because an average person sheds around 100 hairs a day. Forensic experts analyze hair found at crime scenes to identify suspects involved in a crime. Many people color their hair on a regular basis. Therefore, confirmatory analysis of hair colorants can be extremely useful in forensic investigation of hair evidence. However, most currently available methods for analysis of hair colorants are invasive, destructive, or not reliable. Surface enhanced Raman spectroscopy (SERS) is a minimally invasive, fast, and highly accurate technique that can be used to identify colorants present on hair. SERS is based on 106-108 enhancement of Raman scattering from molecules present in the close proximity to noble metal nanostructures. In this study, we investigate the extent to which SERS can be used to reveal coloration history of hair. We found that SERS enables nearly 100% identification of dyes of different color if those were applied on hair in the sequential order. The same accuracy was observed for colorants of different brand and type. Furthermore, SERS was capable of revealing the order in which two colorants were applied on hair. Finally, we demonstrated that SERS could be used to reveal hair coloration history if two randomly selected dyes of different color, brand and type were used to color the hair. These findings facilitate the need for forensic experts to account for hair that has been redyed and can be identified against a library of the same colorant combinations.


Assuntos
Tinturas para Cabelo , Nanoestruturas , Humanos , Análise Espectral Raman/métodos , Nanoestruturas/química , Cor de Cabelo , Cabelo/química
4.
Sci Rep ; 13(1): 7661, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169839

RESUMO

Food security is an emerging problem that is faced by our civilization. There are millions of people around the world suffering from various kinds of malnutrition. The number of people that starve will only increase considering the continuous growth of the world's population. The problem of food security can be addressed by timely detection and identification biotic and abiotic stresses in plants that drastically reduce the crop yield. A growing body of evidence suggests that Raman spectroscopy (RS), an emerging analytical technique, can be used for the confirmatory and non-invasive diagnostics of plant stresses. However, it remains unclear whether RS can efficiently disentangle biotic and abiotic stresses, as well as detect both of them simultaneously in plants. In this work, we modeled a stalk rot disease in corn by inoculating the plant stalks with Colletotrichum graminicola. In parallel, we subjected plants to salt stress, as well as challenging plants with both stalk rot disease and salinity stress simultaneously. After the stresses were introduced, Raman spectra were collected from the stalks to reveal stress-specific changes in the plant biochemistry. We found that RS was able to differentiate between stalk rot disease and salinity stresses with 100% accuracy, as well as predict presence of both of those stresses in plants on early and late stages. These results demonstrate that RS is a robust and reliable approach that can be used for confirmatory, non-destructive and label-free diagnostics of biotic and abiotic stresses in plants.


Assuntos
Análise Espectral Raman , Zea mays , Humanos , Estresse Salino , Plantas
5.
Talanta ; 251: 123762, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931011

RESUMO

Hair is present at nearly all crime scenes. Forensic analysis of hair can be used to establish a connection between a suspect and a crime scene or demonstrate the absence of such connection. Almost half of people around the world color their hair. However, there is no robust and reliable forensic approach that can be used for a confirmatory analysis of artificial colorants present on hair. A growing body of evidence suggests that surface-enhanced Raman spectroscopy (SERS), a modern analytical technique, can be used to detect and identify colorants present on hair. In the current work, we examined the potential of SERS in identification of more than 30 different colorants. We found that the accuracy of detection and identification of individual hair colorants is 97%, on average. We also investigated the extent to which SERS can be used to differentiate between different brands and types of colorants, as well as to identify hair color regardless of the type and brand of the colorant used to dye hair. Our results showed that individual colorants could be identified with on average 97% accuracy, whereas different brands can be predicted with nearly 100% accuracy. We also found that SERS offered nearly 100% accurate identification of the type of the colorant and on average 97.95% accurate prediction of the hair color. These results demonstrate that SERS can facilitate the forensic analysis of hair providing highly important information about the artificial colorants present on the analyzed specimens.


Assuntos
Tinturas para Cabelo , Análise Espectral Raman , Medicina Legal , Cabelo/química , Tinturas para Cabelo/análise , Humanos , Análise Espectral Raman/métodos
6.
Front Plant Sci ; 13: 1035522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325557

RESUMO

Wheat is one of the oldest and most widely cultivated staple food crops worldwide. Wheat encounters an array of biotic and abiotic stresses during its growth that significantly impact the crop yield and consequently global food security. Molecular and imaging methods that can be used to detect such stresses are laborious and have numerous limitations. This catalyzes the search for alternative techniques that can be used to monitor plant health. Raman spectroscopy (RS) is a modern analytical technique that is capable of probing structure and composition of samples non-invasively and non-destructively. In this study, we investigate the accuracy of RS in confirmatory diagnostics of biotic and abiotic stresses in wheat. Specifically, we modelled nitrogen deficiency (ND) and drought, key abiotic stresses, and Russian wheat aphid (Diuraphis noxia) infestation and viral diseases: wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), economically significant biotic stresses in common bread wheat. Raman spectra as well as high pressure liquid chromatography (HPLC)-based analyses revealed drastically distinct changes in the intensity of carotenoid vibration (1185 cm-1) and in the concentration of lutein, chlorophyll, and pheophytin biomolecules of wheat, triggered in response to aforementioned biotic and abiotic stresses. The biochemical changes were reflected in unique vibrational signatures in the corresponding Raman spectra, which, in turn could be used for ~100% accurate identification of biotic and abiotic stresses in wheat. These results demonstrate that a hand-held Raman spectrometer could provide an efficient, scalable, and accurate diagnosis of both biotic as well as abiotic stresses in the field.

7.
Front Cell Infect Microbiol ; 12: 1006134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389168

RESUMO

Lyme disease (LD), the leading tick-borne disease in the Northern hemisphere, is caused by spirochetes of several genospecies of the Borreliella burgdorferi sensu lato complex. LD is a multi-systemic and highly debilitating illness that is notoriously challenging to diagnose. The main drawbacks of the two-tiered serology, the only approved diagnostic test in the United States, include poor sensitivity, background seropositivity, and cross-reactivity. Recently, Raman spectroscopy (RS) was examined for its LD diagnostic utility by our earlier proof-of-concept study. The previous investigation analyzed the blood from mice that were infected with 297 and B31 strains of Borreliella burgdorferi sensu stricto (s.s.). The selected strains represented two out of the three major clades of B. burgdorferi s.s. isolates found in the United States. The obtained results were encouraging and prompted us to further investigate the RS diagnostic capacity for LD in this study. The present investigation has analyzed blood of mice infected with European genospecies, Borreliella afzelii or Borreliella garinii, or B. burgdorferi N40, a strain of the third major class of B. burgdorferi s.s. in the United States. Moreover, 90 human serum samples that originated from LD-confirmed, LD-negative, and LD-probable human patients were also analyzed by RS. The overall results demonstrated that blood samples from Borreliella-infected mice were identified with 96% accuracy, 94% sensitivity, and 100% specificity. Furthermore, human blood samples were analyzed with 88% accuracy, 85% sensitivity, and 90% specificity. Together, the current data indicate that RS should be further explored as a potential diagnostic test for LD patients.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Humanos , Camundongos , Animais , Análise Espectral Raman , Doença de Lyme/diagnóstico
8.
Front Plant Sci ; 13: 754735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651767

RESUMO

Metal toxicities can be detrimental to a plant health, as well as to the health of animals and humans that consume such plants. Metal content of plants can be analyzed using colorimetric, atomic absorption- or mass spectroscopy-based methods. However, these techniques are destructive, costly and laborious. In the current study, we investigate the potential of Raman spectroscopy (RS), a modern spectroscopic technique, for detection and identification of metal toxicities in rice. We modeled medium and high levels of iron and aluminum toxicities in hydroponically grown plants. Spectroscopic analyses of their leaves showed that both iron and aluminum toxicities can be detected and identified with ∼100% accuracy as early as day 2 after the stress initiation. We also showed that diagnostics accuracy was very high not only on early, but also on middle (day 4-day 8) and late (day 10-day 14) stages of the stress development. Importantly this approach only requires an acquisition time of 1 s; it is non-invasive and non-destructive to plants. Our findings suggest that if implemented in farming, RS can enable pre-symptomatic detection and identification of metallic toxins that would lead to faster recovery of crops and prevent further damage.

9.
Planta ; 255(4): 85, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279786

RESUMO

MAIN CONCLUSION: Hand-held Raman spectroscopy can be used for highly accurate differentiation between young male and female hemp plants. This differentiation is based on significantly different concentration of lutein in these plants. Last year, a global market of only industrial hemp attained the value of USD 4.7 billion. It is by far the fastest growing market with projected growth of 22.5% between 2021 and 2026. Hemp (Cannabis sativa L.) is a dioecious species that has separate male and female plants. In hemp farming, female plants are strongly preferred because male plants do not produce sufficient amount of cannabinoids. Male plants are also eliminated to minimize a possibility of uncontrolled cross-fertilization of plants. Silver treatments can induce development of male flowers on genetically female plants in order to produce feminized seed. Resulting cannabinoid hemp production fields should contain 100% female plants. However, any unintended pollination from male plants can produce unwanted males in production fields. Therefore, there is a growing demand for a label-free, non-invasive, and confirmatory approach that can be used to differentiate between male and female plants before flowering. In this study, we examined the extent to which Raman spectroscopy, an emerging optical technique, can be used for the accurate differentiation between young male and female hemp plants. Our findings show that Raman spectroscopy enables differentiation between male and female plants with 90% and 94% accuracy on the level of young and mature plants, respectively. Such analysis is entirely non-invasive and non-destructive to plants and can be performed in seconds using a hand-held spectrometer. High-performance liquid chromatography (HPLC) analysis and collected Raman spectra demonstrate that this spectroscopic differentiation is based on significantly different concentrations of carotenoids in male vs female plants. These findings open up a new avenue for quality control of plants grown in both field and a greenhouse.


Assuntos
Canabinoides , Cannabis , Canabinoides/química , Flores/química , Polinização , Análise Espectral Raman
10.
Forensic Sci Med Pathol ; 13(3): 317-327, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28526950

RESUMO

The purpose of this study was to investigate the impact of post-mortem computed-tomography angiography (PMCTA) on the histology of the liver, kidneys and heart. Multiple tissue cores were collected from the liver, left and right kidneys and left ventricle utilizing CT-guided biopsy. Subsequent whole body PMCTA was performed using a solution of polyethylene glycol and iodinated radiographic contrast, and an embalming pump. Corresponding biopsy cores were collected at autopsy, and blinded histology analysis assessing for PMCTA-induced histology artefact was performed. The blinded analysis of pre-PMCTA and post-PMCTA biopsy samples demonstrated that whole body PMCTA had no effect on the histological analyses of the liver (0%, CI = 0-13.7%), left ventricle of the heart (0%, CI = 0-36.9%) and right kidney (0%, CI = 13.2%), however likely caused increased Bowman's capsule spaces in the left kidney of one case (4%, CI = 0.01-20.4%). Other artefactual histological changes identified included eosinophilic material in the liver, whiter interstitium and dilated tubules in kidney samples, and autolysis-related changes, however these could not be categorically attributed to the PMCTA procedure. PMCTA causes zero or minimal effect to the histological examination of the liver, left kidney, right kidney and left ventricle, and as such performing PMCTA prior to autopsy is unlikely to impact autopsy histological results in these organs.


Assuntos
Angiografia por Tomografia Computadorizada , Meios de Contraste , Ventrículos do Coração/patologia , Biópsia Guiada por Imagem , Rim/patologia , Fígado/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia/métodos , Biópsia com Agulha de Grande Calibre , Feminino , Patologia Legal , Humanos , Iopamidol , Masculino , Pessoa de Meia-Idade , Imagem Corporal Total , Adulto Jovem
11.
Neuro Oncol ; 17(7): 942-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25731774

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. METHODS: The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. RESULTS: Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. CONCLUSIONS: We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches.


Assuntos
Neoplasias Encefálicas/genética , DNA Mitocondrial , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Glioblastoma/genética , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação
12.
Anticancer Res ; 35(1): 77-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550537

RESUMO

BACKGROUND: Effective treatments for glioblastoma multiforme (GBM) are lacking due, in part, to cellular heterogeneity. Consequently, single-target therapeutic strategies are unlikely to succeed. Simultaneous targeting of different neoplastic cell populations within the same tumour may, therefore, prove of value. Neuron-glia 2 (NG2), a transmembrane chondroitin sulphate proteoglycan, present on developing glial cells, and GD3(A), a ganglioside expressed on developing migratory glia, are re-expressed in GBM. MATERIALS AND METHODS: The aims of this study were to conduct 'proof of concept' experiments in human GBM cell lines to show that proliferative high NG2-expressing cells and high GD3(A) -expressing migratory cells could be effectively ablated using a Mab-Zap saporin immunotoxin system. RESULTS: The combinatorial ablation of both NG2 and GD3(A)-expressing cells resulted in significant reduction in GBM cell viability compared to single epitope targeting and controls (p<0.0001); non-neoplastic astrocytes were not affected. CONCLUSION: Multiple targeting of GBM sub-populations may, therefore, help inform novel therapeutic approaches.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Imunotoxinas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Antígenos/imunologia , Antígenos/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Glioma , Humanos , Proteoglicanas/imunologia , Proteoglicanas/metabolismo , Saporinas
13.
Anticancer Res ; 34(12): 6919-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25503117

RESUMO

BACKGROUND/AIM: While neuron-glia 2 (NG2) is well-characterized in the developing brain and in adult high-grade gliomas, little is known about NG2 expression in paediatric brain tumors. Here, NG2 expression was examined in a range of paediatric brain tumors. MATERIALS AND METHODS: A retrospective immunohistopathological analysis of 57 paediatric brain tumor biopsies of various tumor types was carried out. Paediatric cell lines, including two medulloblastomas and one dysembryoplastic neuroepithelial tumor, in addition to one adult high-grade glioma, were also assessed for NG2 expression. RESULTS: NG2-positive staining was seen in all dysembryoplastic neuroepithelial tumors (DNETs) examined; however, only two of the fourteen medulloblastomas examined were NG2-positive. Compared to adult glioma, there was a lack of NG2 staining in the vasculature of paediatric brain tumors. CONCLUSION: NG2 expression in paediatric brain tumors differs depending upon type and, unlike adult glioma, includes expression on lower-grade tumors.


Assuntos
Antígenos/metabolismo , Neoplasias Encefálicas/metabolismo , Proteoglicanas/metabolismo , Adolescente , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Gradação de Tumores , Estudos Retrospectivos
14.
Inorg Chem ; 52(17): 9749-60, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23941111

RESUMO

Two new structurally diverse polyazine-bridged Ru(II),Pt(II) tetrametallic complexes, [{(Ph2phen)2Ru(dpp)}2Ru(dpp)PtCl2](PF6)6 (1a) and [{(Ph2phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (2a) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline), as well as their trimetallic precursors have been synthesized to provide a comparison for detailed analysis to elucidate component effects in the previously reported photocatalyst [{(phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (4a) (phen = 1,10-phenanthroline). Electrochemistry shows terminal Ru based highest occupied molecular orbitals (HOMOs) with remote BL' (BL' = bridging ligand coupling central Ru and cis-PtCl2 moiety) based lowest unoccupied molecular orbitals (LUMOs). Population of a lowest-lying charge separated ((3)CS) excited state with oxidized terminal Ru and reduced remote BL' via intramolecular electron transfer is predicted by electrochemical analysis and is observed through steady-state and time-resolved emission studies as well as emission excitation profiles which display unusual nonunity population of the lowest lying emissive Ru→dpp (3)MLCT (metal-to-ligand charge transfer) state. Each tetrametallic complex is an active photocatalyst for H2 production from H2O with 2a showing the highest activity (94 TON (turnover number) in 10 h, where TON = mol H2/mol catalyst). The nature of the bridging ligand coupling the trimetallic light absorber to the cis-PtCl2 moiety has a significant impact on the catalyst activity, correlated to the degree of population of the (3)CS excited state. The choice of terminal ligand affects visible light absorption and has a minor influence on photocatalytic H2 production from H2O. Evidence that an intact supramolecule functions as the photocatalyst includes a strong dependence of the photocatalysis on the identity of BL', an insensitivity to Hg(l), no detectable H2 production from the systems with the trimetallic synthons and cis-[PtCl2(DMSO)2] as well as spectroscopic analysis of the photocatalytic system.

15.
Res Social Adm Pharm ; 9(1): 114-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22554398

RESUMO

BACKGROUND: Requests for supply of the emergency contraceptive pill (ECP) through community pharmacies require consideration of a range of factors and the application of professional judgment. Pharmacists should therefore be able to follow a structured reasoning process. OBJECTIVES: The research involved an assessment of history taking and counseling by pharmacy staff through mystery patient emergency contraception product requests. METHODS: Two challenging ECP request case scenarios were developed with assessment tools. Mystery patients were trained to present the scenarios to pharmacies. A project information package and expression of interest form was posted to 135 pharmacies in the Gold Coast, Australia; 23 (17%) pharmacies agreed to participate. RESULTS: Pharmacy staff was exposed to 1 of 2 scenarios during December 2010. Staff interactions were recorded, analyzed, and rated to evaluate the management of ECP requests. The results identified practice gaps among pharmacy staff with respect to information gathering and the provision of advice. CONCLUSION: Ongoing training is required to enhance the skills, competence, and confidence of pharmacy staff in managing complicated requests for nonprescription medicines, such as the ECP. The impact of time pressures and financial burdens on the provision of pharmaceutical services needs to be acknowledged.


Assuntos
Serviços Comunitários de Farmácia/organização & administração , Anticoncepcionais Pós-Coito/provisão & distribuição , Simulação de Paciente , Farmacêuticos/organização & administração , Adolescente , Adulto , Austrália , Competência Clínica , Serviços Comunitários de Farmácia/normas , Anticoncepção Pós-Coito/métodos , Aconselhamento/métodos , Feminino , Humanos , Masculino , Anamnese/métodos , Farmacêuticos/normas , Fatores de Tempo
18.
Chem Commun (Camb) ; 48(1): 67-9, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22075568

RESUMO

The Ru(II)-Pt(II) supramolecular complex, [(Ph(2)phen)(2)Ru(dpp)PtCl(2)](2+), displays a new mechanism for DNA modification: photobinding through a (3)MLCT excited state. Gel shift analysis, selective DNA precipitation, and DNA melting point experiments support efficient covalent DNA binding following visible light excitation.


Assuntos
DNA/química , Luz , Fotoquimioterapia/métodos , Platina/química , Rutênio/química , Animais , Bovinos , Precipitação Química , Cor , DNA/metabolismo , Transporte de Elétrons , Ligantes , Desnaturação de Ácido Nucleico , Platina/metabolismo , Rutênio/metabolismo , Temperatura de Transição
20.
Inorg Chem ; 50(18): 8850-60, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21861446

RESUMO

Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA