Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071269

RESUMO

Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds. The results suggest that while the general features of fungiform taste buds are similar between mice and humans, several characteristics differ significantly. Human taste buds are larger and taller than those of mice, yet they contain similar numbers of taste cells. Taste buds in humans are more heavily innervated by gustatory nerve fibers expressing the purinergic receptor P2X3 showing a 40% higher innervation density than in mice. Like Type II cells of mice, a subset (about 30%) of cells in human taste buds is immunoreactive for PLCß2. These PLCß2-immunoreactive cells display CALHM1-immunoreactive puncta closely apposed to gustatory nerve fibers suggestive of channel-type synapses described in mice. These puncta, used as a measure of synaptic contact, are however significantly larger in humans compared to mice. Altogether these findings suggest that while many similarities exist in the structural organization of murine and human fungiform taste buds, significant differences do exist in taste bud size, innervation density, and size of synaptic contacts that may impact gustatory signal transmission.

2.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37057093

RESUMO

Background: Antagonists to the P2X purinergic receptors on airway sensory nerves relieve refractory or unexplained chronic cough (RCC/UCC) but can evoke unwanted dysgeusias because the gustatory nerves innervating taste buds express this same family of receptors. However, the subunit composition of the P2X receptors in these systems may differ, with implications for pharmacological intervention of RCC/UCC. In most species, the extrapulmonary airway nerves involved in cough predominantly express P2X3 subunits that form homotrimeric P2X3 receptors. In contrast, most sensory nerves innervating taste buds in mice express both P2X2 and P2X3 subunits, so the majority of receptors in that system are likely P2X2/P2X3 heteromers. Methods: Since neural P2X subunit composition can differ across species, we used immunohistochemistry to test whether taste nerves in humans and rhesus macaque monkeys express both P2X2 and P2X3 as in mice. Results: In taste bud samples of fungiform papillae and larynx from humans and monkeys, all taste bud samples exhibited P2X3+ nerve fibres, but the majority lacked substantial P2X2+. Of the 35 human subjects, only four (one laryngeal and three fungiform) showed strong P2X2 immunoreactivity in taste nerves; none of the rhesus monkey samples showed immunoreactivity for P2X2. Conclusions: These findings suggest that for most humans, unlike mice, taste buds are innervated by nerve fibres predominantly expressing only P2X3 homomeric receptors and not P2X2/P2X3 heteromers. Thus, antagonists specific for P2X3 homomeric receptors might not be spared from affecting taste function in RCC/UCC patients.

3.
Neurobiol Dis ; 158: 105470, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371143

RESUMO

Mitochondrial superoxide (O2-) production is implicated in aging, neurodegenerative disease, and most recently epilepsy. Yet the specific contribution of neuronal O2- to these phenomena is unclear. Here, we selectively deleted superoxide dismutase-2 (SOD2) in neuronal basic helix-loop-helix transcription factor (NEX)-expressing cells restricting deletion to a subset of excitatory principle neurons primarily in the forebrain (cortex and hippocampus). This resulted in nSOD2 KO mice that lived into adulthood (2-3 months) with epilepsy, selective loss of neurons, metabolic rewiring and a marked mitohormetic gene response. Surprisingly, expression of an astrocytic gene, glial fibrillary acidic protein (GFAP) was significantly increased relative to WT. Further studies in rat primary neuron-glial cultures showed that increased mitochondrial O2-, specifically in neurons, was sufficient to upregulate GFAP. These results suggest that neuron-specific mitochondrial O2- is sufficient to drive a complex and catastrophic epileptic phenotype and highlights the ability of SOD2 to act in a cell-nonautonomous manner to influence an astrocytic response.


Assuntos
Astrócitos/patologia , Epilepsia/patologia , Transtornos do Metabolismo de Glucose/patologia , Mitocôndrias , Neurônios , Estresse Oxidativo , Animais , Comportamento Animal , Eletroencefalografia , Epilepsia/psicologia , Proteína Glial Fibrilar Ácida/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Cultura Primária de Células , Ratos , Superóxido Dismutase/genética , Superóxidos/metabolismo
4.
Neurol Clin Pract ; 11(2): e48-e63, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33842072

RESUMO

PURPOSE OF REVIEW: The current coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the greatest medical crises faced by our current generation of health care providers. Although much remains to be learned about the pathophysiology of SARS-CoV-2, there is both historical precedent from other coronaviruses and a growing number of case reports and series that point to neurologic consequences of COVID-19. RECENT FINDINGS: Olfactory/taste disturbances and increased risk of strokes and encephalopathies have emerged as potential consequences of COVID-19 infection. Evidence regarding whether these sequelae result indirectly from systemic infection or directly from neuroinvasion by SARS-CoV-2 is emerging. SUMMARY: This review summarizes the current understanding of SARS-CoV-2 placed in context with our knowledge of other human coronaviruses. Evidence and data regarding neurologic sequelae of COVID-19 and the neuroinvasive potential of human coronaviruses are provided along with a summary of patient registries of interest to the Neurology community.

5.
Sci Signal ; 11(529)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739879

RESUMO

Conventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers. Ultrastructural and super-resolution light microscopy showed that the CALHM1 channels were consistently associated with distinctive, large (1- to 2-µm) mitochondria spaced 20 to 40 nm from the presynaptic membrane. Pharmacological disruption of the mitochondrial respiratory chain limited the ability of taste cells to release ATP, suggesting that the immediate source of released ATP was the mitochondrion rather than a cytoplasmic pool of ATP. These large mitochondria may serve as both a reservoir of releasable ATP and the site of synthesis. The juxtaposition of the large mitochondria to areas of membrane displaying CALHM1 also defines a restricted compartment that limits the influx of Ca2+ upon opening of the nonselective CALHM1 channels. These findings reveal a distinctive organelle signature and functional organization for regulated, focal release of purinergic signals in the absence of synaptic vesicles.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Ativação do Canal Iônico , Mitocôndrias/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Camundongos , Fibras Nervosas/metabolismo , Transdução de Sinais , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-26113817

RESUMO

Electron microscopy has revealed an abundance of material in the clefts of synapses in the mammalian brain, and the biochemical and functional characteristics of proteins occupying synaptic clefts are well documented. However, the detailed spatial organization of the proteins in the synaptic clefts remains unclear. Electron microscope tomography provides a way to delineate and map the proteins spanning the synaptic cleft because freeze substitution preserves molecular details with sufficient contrast to visualize individual cleft proteins. Segmentation and rendering of electron dense material connected across the cleft reveals discrete structural elements that are readily classified into five types at excitatory synapses and four types at inhibitory synapses. Some transcleft elements resemble shapes and sizes of known proteins and could represent single dimers traversing the cleft. Some of the types of cleft elements at inhibitory synapses roughly matched the structure and proportional frequency of cleft elements at excitatory synapses, but the patterns of deployments in the cleft are quite different. Transcleft elements at excitatory synapses were often evenly dispersed in clefts of uniform (18 nm) width but some types show preference for the center or edges of the cleft. Transcleft elements at inhibitory synapses typically were confined to a peripheral region of the cleft where it narrowed to only 6 nm wide. Transcleft elements in both excitatory and inhibitory synapses typically avoid places where synaptic vesicles attach to the presynaptic membrane. These results illustrate that elements spanning synaptic clefts at excitatory and inhibitory synapses consist of distinct structures arranged by type in a specific but different manner at excitatory and inhibitory synapses.

7.
Anesthesiology ; 118(3): 587-601, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23254148

RESUMO

BACKGROUND: Although in vitro studies have identified numerous possible targets, the molecules that mediate the in vivo effects of volatile anesthetics remain largely unknown. The mammalian ryanodine receptor (Ryr) is a known halothane target, and the authors hypothesized that it has a central role in anesthesia. METHODS: Gene function of the Drosophila Ryr (dRyr) was manipulated in the whole body or in specific tissues using a collection of mutants and transgenes, and responses to halothane were measured with a reactive climbing assay. Cellular responses to halothane were studied using Ca imaging and patch clamp electrophysiology. RESULTS: Halothane potency strongly correlates with dRyr gene copy number, and missense mutations in regions known to be functionally important in the mammalian Ryrs gene cause dominant hypersensitivity. Tissue-specific manipulation of dRyr shows that expression in neurons and glia, but not muscle, mediates halothane sensitivity. In cultured cells, halothane-induced Ca efflux is strictly dRyr-dependent, suggesting a close interaction between halothane and dRyr. Ca imaging and electrophysiology of Drosophila central neurons reveal halothane-induced Ca flux that is altered in dRyr mutants and correlates with strong hyperpolarization. CONCLUSIONS: In Drosophila, neurally expressed dRyr mediates a substantial proportion of the anesthetic effects of halothane in vivo, is potently activated by halothane in vitro, and activates an inhibitory conductance. The authors' results provide support for Ryr as an important mediator of immobilization by volatile anesthetics.


Assuntos
Anestesia Geral , Anestésicos Inalatórios/farmacologia , Halotano/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Drosophila melanogaster , Imobilização/métodos , Masculino , Dados de Sequência Molecular , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
8.
Cancer Causes Control ; 23(11): 1805-10, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961099

RESUMO

PURPOSE: Previous studies have examined the association between ABO blood group and ovarian cancer risk, with inconclusive results. METHODS: In eight studies participating in the Ovarian Cancer Association Consortium, we determined ABO blood groups and diplotypes by genotyping 3 SNPs in the ABO locus. Odds ratios and 95 % confidence intervals were calculated in each study using logistic regression; individual study results were combined using random effects meta-analysis. RESULTS: Compared to blood group O, the A blood group was associated with a modestly increased ovarian cancer risk: (OR: 1.09; 95 % CI: 1.01-1.18; p = 0.03). In diplotype analysis, the AO, but not the AA diplotype, was associated with increased risk (AO: OR: 1.11; 95 % CI: 1.01-1.22; p = 0.03; AA: OR: 1.03; 95 % CI: 0.87-1.21; p = 0.76). Neither AB nor the B blood groups were associated with risk. Results were similar across ovarian cancer histologic subtypes. CONCLUSION: Consistent with most previous reports, the A blood type was associated modestly with increased ovarian cancer risk in this large analysis of multiple studies of ovarian cancer. Future studies investigating potential biologic mechanisms are warranted.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Neoplasias Epiteliais e Glandulares/sangue , Neoplasias Ovarianas/sangue , Carcinoma Epitelial do Ovário , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA