Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069753

RESUMO

Hydrocarbon stapling is a useful tool for stabilizing the secondary structure of peptides. Among several methods, hydrocarbon stapling at i,i + 1 positions was not extensively studied, and their secondary structures are not clarified. In this study, we investigate i,i + 1 hydrocarbon stapling between cis-4-allyloxy-l-proline and various olefin-tethered amino acids. Depending on the ring size of the stapled side chains and structure of the olefin-tethered amino acids, E- or Z-selectivities were observed during the ring-closing metathesis reaction (E/Z was up to 8.5:1 for 17-14-membered rings and up to 1:20 for 13-membered rings). We performed X-ray crystallographic analysis of hydrocarbon stapled peptide at i,i + 1 positions. The X-ray crystallographic structure suggested that the i,i + 1 staple stabilizes the peptide secondary structure to the right-handed α-helix. These findings are especially important for short oligopeptides because the employed stapling method uses two minimal amino acid residues adjacent to each other.


Assuntos
Hidrocarbonetos/química , Peptídeos/química , Estabilidade Proteica/efeitos dos fármacos , Alcenos/química , Sequência de Aminoácidos/genética , Aminoácidos/química , Dicroísmo Circular/métodos , Cristalografia por Raios X/métodos , Oligopeptídeos/química , Prolina/química , Conformação Proteica em alfa-Hélice/fisiologia , Estrutura Secundária de Proteína/fisiologia , Raios X
2.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066194

RESUMO

We designed and synthesized helical short oligopeptides with an L-proline on the N-terminus and hydrocarbon stapling on the side chain. Side-chain stapling is a frequently used method for the development of biologically active peptides. Side-chain stapling can stabilize the secondary structures of peptides, and, therefore, stapled peptides may be applicable to peptide-based organocatalysts. Olefin-tethered cis-4-hydroxy-L-proline 1 and L-serine 2 and 8, and (R)-α-allyl-proline 18 were used as cross-linking motifs and incorporated into helical peptide sequences. The Z- and E-selectivities were observed for the ring-closing metathesis reactions of peptides 3 and 11 (i,i+1 series), respectively, while no E/Z-selectivity was observed for that of 19 (i,i+3 series). The stapled peptide B' catalyzed the Michael addition reaction of 1-methylindole to α,ß-unsaturated aldehyde, which was seven times faster than that of unstapled peptide B. Furthermore, the high catalytic activity was retained even at lower catalyst loadings (5 mol %) and lower temperatures (0 °C). The circular dichroism spectra of stapled peptide B' showed a right-handed helix with a higher intensity than that of unstapled peptide B. These results indicate that the introduction of side-chain stapling is beneficial for enhancing the catalytic activity of short oligopeptide catalysts.


Assuntos
Hidrocarbonetos/química , Oligopeptídeos/síntese química , Prolina/química , Alcenos/química , Catálise , Dicroísmo Circular , Indóis/química , Oligopeptídeos/química , Conformação Proteica , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA