Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 242: 120269, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393812

RESUMO

Invertebrates such as Asellus aquaticus, halacarid mites, copepods and cladocerans are known to regularly occur in drinking water distribution systems (DWDS). An eight-year study investigated the biomass and taxonomic composition of invertebrates in the finished water of nine Dutch drinking water treatment plants (using surface water, ground water or dune-infiltrated water) and their non-chlorinated distribution systems. The main aims of the study were to examine the source waters' influence on invertebrate biomass and composition in the distribution networks and to describe invertebrate ecology in relation to the habitat of filters and the DWDS. Invertebrate biomass of the finished drinking waters of the surface water treatment plants was significantly higher than in the finished waters of the other treatment plants. This difference was due to the higher nutrient levels of the source water. The main part of the biomass in the finished water of the treatment plants consisted of rotifers, harpacticoid copepods, copepod larvae, cladocerans and oligochaetes, which are small-sized, euryoecious and tolerate broad environmental conditions. Most of them reproduce asexually. Most species found in the DWDS are known to be detritivores, but all are benthic and euryoecious organisms, many of which have a cosmopolitan distribution. The euryoeciousness of these freshwater species was also shown by their occurrence in brackish waters and ground or hyporheic waters and the ability of many eurythermic species to overwinter in the DWDS habitat. These species are preadapted to the oligotrophic environment of the DWDS and can develop stable populations there. Most species can reproduce asexually and the sexually reproducing invertebrates (Asellus aquaticus, cyclopoids and probably also halacarids) have obviously overcome the potential problem of finding a mating partner. This study also showed a significant correlation of DOC in the drinking water with the invertebrate biomass. A. aquaticus was the dominant biomass component in six out of nine locations and was highly correlated with the Aeromonas counts in the DWDS. Thus, invertebrate monitoring in DWDS is an important additional parameter in understanding biological stability conditions in non-chlorinated DWDS.


Assuntos
Água Potável , Água Subterrânea , Purificação da Água , Animais , Biomassa , Invertebrados
2.
Sci Total Environ ; 871: 161930, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740059

RESUMO

Nine novel biological stability parameters for drinking water have been developed recently. Here, we report data for these nine parameters in treated water from 34 treatment plants in the Netherlands to deduce guidance values for these parameters. Most parameters did not show a strong correlation with another biological stability parameter in the same sample, demonstrating that most parameters hold different information on the biological stability of drinking water. Furthermore, the novel biological stability parameters in treated water varied considerably between plants and five parameters in treated water were significantly lower for drinking water produced from groundwater than surface water. The maximum biomass concentration (MBC7), cumulative biomass potential (CBP14) from the biomass production potential test (BPP-W) and the total organic carbon concentration in treated water from groundwater were predictive parameters for HPC22 and Aeromonas regrowth in the distribution system. Guidance values of 8.6 ng ATP L-1, 110 d·ng ATP L-1 and 4.1 mg C L-1 were deduced for these parameters, under which the HPC22 and Aeromonas numbers remain at regulatory level. The maximum biomass growth (MBG7) from the BPP-W test, the particulate and/or high molecular organic carbon and the iron accumulation rate in treated water from surface water were predictive parameters for HPC22 and Aeromonas regrowth in the distribution system. Deduced guidance values for these biological stability parameters were 4.5 ng ATP L-1, 47 µg C L-1 and 0.34 mg Fe m-2 day-1, respectively. We conclude from our study that a multiple parameter assessment is required to reliable describe the biological stability of drinking water, that the biological stability of drinking water produced from groundwater is described with other parameters than the biological stability of drinking water produced from surface water, and that guidance values for predictive biological stability parameters were inferred under which HPC22 and Aeromonas regrowth is under control.


Assuntos
Água Potável , Purificação da Água , Água Potável/análise , Abastecimento de Água , Carbono/análise , Trifosfato de Adenosina , Microbiologia da Água
3.
Environ Sci Technol ; 54(22): 14535-14546, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33135888

RESUMO

Microbial presence and regrowth in drinking water distribution systems (DWDSs) is routinely monitored to assess the biological stability of drinking water without a residual disinfectant, but the conventional microbiological culture methods currently used target only a very small fraction of the complete DWDS microbiome. Here, we sequenced 16S rRNA gene amplicons to elucidate the attached and suspended prokaryotic community dynamics within three nonchlorinated DWDSs with variable regrowth conditions distributing similarly treated surface water from the same source. One rural location, with less regrowth related issues, differed most strikingly from the other two urban locations by the exclusive presence of Pseudonocardia (Actinobacteria) in the biofilm and the absence of Limnobacter (Betaproteobacteriales) in the water and loose deposits during summer. There was a dominant seasonal effect on the drinking water microbiomes at all three locations. For one urban location, it was established that the most significant changes in the microbial community composition on a spatial scale occurred shortly after freshly treated water entered the DWDS. However, summerly regrowth of Limnobacter, one of the dominant genera in the distributed drinking water, already occurred in the clean water reservoir at the treatment plant before further distribution. The highlighted bacterial lineages within these highly diverse DWDS communities might be important new indicators for undesirable regrowth conditions affecting the final drinking water quality.


Assuntos
Água Potável , Microbiota , Purificação da Água , Bactérias/genética , Biofilmes , RNA Ribossômico 16S/genética , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
4.
Water Res ; 47(7): 2592-602, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23490102

RESUMO

Slow sand filtration (SSF) in drinking water production removes pathogenic microorganisms, but detection limits and variable operational conditions complicate assessment of removal efficiency. Therefore, a model was developed to predict removal of human pathogenic viruses and bacteria as a function of the operational conditions. Pilot plant experiments were conducted, in which bacteriophage MS2 and Escherichia coli WR1 were seeded as model microorganisms for pathogenic viruses and bacteria onto the filters under various temperatures, flow rates, grain sizes and ages of the Schmutzdecke. Removal of MS2 was 0.082-3.3 log10 and that of E. coli WR1 0.94-4.5 log10 by attachment to the sand grains and additionally by processes in the Schmutzdecke. The contribution of the Schmutzdecke to the removal of MS2 and E. coli WR1 increased with its ageing, with sticking efficiency and temperature, decreased with grain size, and was modelled as a logistic growth function with scale factor f0 and rate coefficient f1. Sticking efficiencies were found to be microorganism and filter specific, but the values of f0 and f1 were independent of microorganism and filter. Cross-validation showed that the model can be used to predict log removal of MS2 and ECWR1 within ±0.6 log. Within the range of operational conditions, the model shows that removal of microorganisms is most sensitive to changes in temperature and age of the Schmutzdecke.


Assuntos
Escherichia coli/isolamento & purificação , Filtração/métodos , Levivirus/isolamento & purificação , Modelos Teóricos , Dióxido de Silício/química , Biodegradação Ambiental , Humanos , Cinética , Sais/química , Esgotos/química , Temperatura , Fatores de Tempo , Microbiologia da Água , Purificação da Água
5.
Water Res ; 41(10): 2151-62, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17400275

RESUMO

The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56m(2) was loaded with C. parvum oocysts and two other persistent organisms as potential surrogates; spores of Clostridium perfringens (SCP) and the small-sized (4-7microm) centric diatom (SSCD) Stephanodiscus hantzschii. Highly persistent micro-organisms that are retained in slow sand filters are expected to accumulate and eventually break through the filter bed. To investigate this phenomenon, a dosing period of 100 days was applied with an extended filtrate monitoring period of 150 days using large-volume sampling. Based on the breakthrough curves the DEC of the filter bed for oocysts was high and calculated to be 4.7log. During the extended filtrate monitoring period the spatial distribution of the retained organisms in the filter bed was determined. These data showed little risk of accumulation of oocysts in mature filters most likely due to predation by zooplankton. The DEC for the two surrogates, SCP and SSCD, was 3.6 and 1.8log, respectively. On basis of differences in transport behaviour, but mainly because of the high persistence compared to the persistence of oocysts, it was concluded that both spores of sulphite-reducing clostridia (incl. SCP) and SSCD are unsuited for use as surrogates for oocyst removal by slow sand filters. Further research is necessary to elucidate the role of predation in Cryptosporidium removal and the fate of consumed oocysts.


Assuntos
Cryptosporidium parvum/isolamento & purificação , Diatomáceas/isolamento & purificação , Poluentes da Água/isolamento & purificação , Trifosfato de Adenosina/isolamento & purificação , Animais , Clostridium perfringens/isolamento & purificação , Dióxido de Silício , Microbiologia da Água , Zooplâncton/isolamento & purificação
6.
Environ Sci Technol ; 39(20): 7860-8, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16295848

RESUMO

To define protection zones around groundwater abstraction wells and safe setback distances for artificial recharge systems in watertreatment, quantitative information is needed about the removal of microorganisms during soil passage. Column experiments were conducted using natural soil and water from an infiltration site with fine sandy soil and a river bank infiltration site with gravel soil. The removal of phages, bacteria, bacterial spores, and protozoan (oo)-cysts was determined at two velocities and compared with field data from the same sites. The microbial elimination rate (MER) in both soils was generally >2 log, but MER in the gravel soil was higher than that in the fine sandy soil. This was attributed to enhanced attachment, related to higher metal-hydroxides content. From the high sticking efficiencies (>1) and the low influence of flow rate on MER it was deduced that straining played a significant role in the removal of Escherichia coli and Cryptosporidium parvum oocysts in the gravel soil. Lower removal of oocysts than the 4-5 times smaller E. coli and spores in the fine sand indicates that the contribution of straining is variable and needs further attention in transport models. Thus, simple extrapolation of grain size and particle size to the extent of microbial transport underground is inappropriate. Finally, the low MER of indigenous E. coli and Clostridium perfringens observed in the soil columns as well as under field conditions and the second breakthrough peak found for Cryptosporidium and spores in the fine sandy soil upon a change in the feedwater pH indicate a significant role of detachment and retardation to microbial transport and the difficulty of extrapolation of quantitative column test results to field conditions.


Assuntos
Clostridium perfringens/fisiologia , Cryptosporidium parvum/fisiologia , Escherichia coli/fisiologia , Giardia lamblia/fisiologia , Levivirus/fisiologia , Movimento , Microbiologia do Solo , Animais , Modelos Teóricos , Tamanho da Partícula , Dióxido de Silício , Solo/análise , Água/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA