Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508723

RESUMO

Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at mucosal surfaces. MUC1 has a barrier function against bacterial invasion and is well known for its aberrant expression and glycosylation in adenocarcinomas. The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated. Monoclonal antibodies against the MUC1 VNTR are powerful research tools with applications in the diagnosis and treatment of MUC1-expressing cancers. Here, we report direct mass spectrometry-based sequencing of anti-MUC1 hybridoma-derived 139H2 IgG, enabling reverse-engineering of the functional recombinant monoclonal antibody. The crystal structure of the 139H2 Fab fragment in complex with the MUC1 epitope was solved, revealing the molecular basis of 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostic, targeting, and treatment strategies.


Assuntos
Mucina-1 , Neoplasias , Humanos , Sequência de Aminoácidos , Mucina-1/genética , Mucina-1/química , Mucinas/genética , Mucinas/metabolismo , Glicosilação , Anticorpos Monoclonais
2.
Cancer Lett ; 568: 216301, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406727

RESUMO

We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Camundongos , Animais , Humanos , Feminino , Via de Sinalização Wnt , Neoplasias da Mama/genética , Células-Tronco , Proliferação de Células
3.
J Pathol ; 258(3): 289-299, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106661

RESUMO

R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/ß-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/ß-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Mamárias Animais , beta Catenina , Animais , Carcinogênese/genética , Hormônios , Camundongos , Oncogenes , Esteroides , Trombospondinas/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
4.
Oncogene ; 37(12): 1594-1609, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326437

RESUMO

Personalized medicine for cancer patients requires a deep understanding of the underlying genetics that drive cancer and the subsequent identification of predictive biomarkers. To discover new genes and pathways contributing to oncogenesis and therapy resistance in HER2+ breast cancer, we performed Mouse Mammary Tumor Virus (MMTV)-induced insertional mutagenesis screens in ErbB2/cNeu-transgenic mouse models. The screens revealed 34 common integration sites (CIS) in mammary tumors of MMTV-infected mice, highlighting loci with multiple independent MMTV integrations in which potential oncogenes are activated, most of which had never been reported as MMTV CIS. The CIS most strongly associated with the ErbB2-transgenic genotype was the locus containing Eras (ES cell-expressed Ras), a constitutively active RAS-family GTPase. We show that upon expression, Eras acts as a potent oncogenic driver through hyperactivation of the PI3K/AKT pathway, in contrast to other RAS proteins that signal primarily via the MAPK/ERK pathway and require upstream activation or activating mutations to induce signaling. We additionally show that ERAS synergistically enhances HER2-induced tumorigenesis and, in this role, can functionally replace ERBB3/HER3 by acting as a more powerful activator of PI3K/AKT signaling. Although previously reported as pseudogene in humans, we observed ERAS RNA and protein expression in a substantial subset of human primary breast carcinomas. Importantly, we show that ERAS induces primary resistance to the widely used HER2-targeting drugs Trastuzumab (Herceptin) and Lapatinib (Tykerb/Tyverb) in vivo, and is involved in acquired resistance via selective upregulation during treatment in vitro, indicating that ERAS may serve as a novel clinical biomarker for PI3K/AKT pathway hyperactivation and HER2-targeted therapy resistance.


Assuntos
Neoplasias da Mama/patologia , Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Mamárias Experimentais/patologia , Mutagênese Insercional/fisiologia , Proteína Oncogênica p21(ras)/fisiologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Cultivadas , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Proteína Oncogênica p21(ras)/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
5.
Cell Death Differ ; 24(11): 1937-1947, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731466

RESUMO

Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Galectina 3/metabolismo , Mucina-1/metabolismo , Neoplasias/metabolismo , Multimerização Proteica , Proteínas Sanguíneas , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Galectinas , Humanos , Lapatinib , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucina-1/química , Mutação/genética , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/efeitos dos fármacos , Quinazolinas/farmacologia
6.
Mol Cell Oncol ; 4(2): e1279722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401183

RESUMO

Insulin receptor substrate 4 (IRS4) belongs to a family of cytoplasmic docking proteins mediating signals from cell surface receptors to downstream effectors. While IRS1 and IRS2 mediate signals from an active receptor, we found that IRS4 hyperactivates the phosphatidylinositol phosphate kinase (PI3K)-pathway independent of upstream signals and is irresponsive to feedback regulation causing cancer and resistance to human epidermal growth factor receptor 2 (HER2) targeted therapy.

7.
Gut ; 66(6): 1095-1105, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27511199

RESUMO

OBJECTIVE: The gross majority of colorectal cancer cases results from aberrant Wnt/ß-catenin signalling through adenomatous polyposis coli (APC) or CTNNB1 mutations. However, a subset of human colon tumours harbour, mutually exclusive with APC and CTNNB1 mutations, gene fusions in RSPO2 or RSPO3, leading to enhanced expression of these R-spondin genes. This suggested that RSPO activation can substitute for the most common mutations as an alternative driver for intestinal cancer. Involvement of RSPO3 in tumour growth was recently shown in RSPO3-fusion-positive xenograft models. The current study determines the extent into which solely a gain in RSPO3 actually functions as a driver of intestinal cancer in a direct, causal fashion, and addresses the in vivo activities of RSPO3 in parallel. DESIGN: We generated a conditional Rspo3 transgenic mouse model in which the Rspo3 transgene is expressed upon Cre activity. Cre is provided by cross-breeding with Lgr5-GFP-CreERT2 mice. RESULTS: Upon in vivo Rspo3 expression, mice rapidly developed extensive hyperplastic, adenomatous and adenocarcinomatous lesions throughout the intestine. RSPO3 induced the expansion of Lgr5+ stem cells, Paneth cells, non-Paneth cell label-retaining cells and Lgr4+ cells, thus promoting both intestinal stem cell and niche compartments. Wnt/ß-catenin signalling was modestly increased upon Rspo3 expression and mutant Kras synergised with Rspo3 in hyperplastic growth. CONCLUSIONS: We provide in vivo evidence that RSPO3 stimulates the crypt stem cell and niche compartments and drives rapid intestinal tumorigenesis. This establishes RSPO3 as a potent driver of intestinal cancer and proposes RSPO3 as a candidate target for therapy in patients with colorectal cancer harbouring RSPO3 fusions.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Carcinogênese/genética , Neoplasias Intestinais/genética , Intestinos/patologia , Celulas de Paneth/patologia , Células-Tronco/patologia , Trombospondinas/genética , Trombospondinas/metabolismo , Adenocarcinoma/patologia , Adenoma/patologia , Animais , Crescimento Celular , Movimento Celular/genética , Proliferação de Células/genética , Expressão Gênica , Hiperplasia/genética , Hiperplasia/patologia , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/patologia , Camundongos , Camundongos Transgênicos , Mutação , Organoides/patologia , Celulas de Paneth/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/análise , Células-Tronco/química , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
8.
Nat Commun ; 7: 13567, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876799

RESUMO

In search of oncogenic drivers and mechanisms affecting therapy resistance in breast cancer, we identified Irs4, a poorly studied member of the insulin receptor substrate (IRS) family, as a mammary oncogene by insertional mutagenesis. Whereas normally silent in the postnatal mammary gland, IRS4 is found to be highly expressed in a subset of breast cancers. We show that Irs4 expression in mammary epithelial cells induces constitutive PI3K/AKT pathway hyperactivation, insulin/IGF1-independent cell proliferation, anchorage-independent growth and in vivo tumorigenesis. The constitutive PI3K/AKT pathway hyperactivation by IRS4 is unique to the IRS family and we identify the lack of a SHP2-binding domain in IRS4 as the molecular basis of this feature. Finally, we show that IRS4 and ERBB2/HER2 synergistically induce tumorigenesis and that IRS4-expression confers resistance to HER2-targeted therapy. Taken together, our findings present the cellular and molecular mechanisms of IRS4-induced tumorigenesis and establish IRS4 as an oncogenic driver and biomarker for therapy resistance in breast cancer.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Animais , Antineoplásicos/farmacologia , Proliferação de Células , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/genética
9.
PLoS One ; 11(10): e0165031, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768738

RESUMO

Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent' protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its 'parent' MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions. Comprising at least 524 amino acids, MUC1-ARF is, furthermore, the longest ARF protein heretofore described.


Assuntos
Núcleo Celular/metabolismo , Mucina-1/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Códon , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Mucina-1/metabolismo , Neoplasias Pancreáticas/metabolismo
10.
PLoS Genet ; 10(4): e1004250, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24721906

RESUMO

The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of ~ 120,000 to ~ 180,000 unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed ~ 80 (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%-33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes.


Assuntos
Cromatina/genética , Elementos de DNA Transponíveis/genética , Retroviridae/genética , Animais , Ilhas de CpG/genética , Genoma/genética , Camundongos , Mutagênese Insercional/métodos , Oncogenes/genética
11.
PLoS One ; 8(5): e62113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690930

RESUMO

Cancer develops through a multistep process in which normal cells progress to malignant tumors via the evolution of their genomes as a result of the acquisition of mutations in cancer driver genes. The number, identity and mode of action of cancer driver genes, and how they contribute to tumor evolution is largely unknown. This study deployed the Mouse Mammary Tumor Virus (MMTV) as an insertional mutagen to find both the driver genes and the networks in which they function. Using deep insertion site sequencing we identified around 31000 retroviral integration sites in 604 MMTV-induced mammary tumors from mice with mammary gland-specific deletion of Trp53, Pten heterozygous knockout mice, or wildtype strains. We identified 18 known common integration sites (CISs) and 12 previously unknown CISs marking new candidate cancer genes. Members of the Wnt, Fgf, Fgfr, Rspo and Pdgfr gene families were commonly mutated in a mutually exclusive fashion. The sequence data we generated yielded also information on the clonality of insertions in individual tumors, allowing us to develop a data-driven model of MMTV-induced tumor development. Insertional mutations near Wnt and Fgf genes mark the earliest "initiating" events in MMTV induced tumorigenesis, whereas Fgfr genes are targeted later during tumor progression. Our data shows that insertional mutagenesis can be used to discover the mutational networks, the timing of mutations, and the genes that initiate and drive tumor evolution.


Assuntos
Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/fisiologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Genótipo , Humanos , Neoplasias Mamárias Experimentais/virologia , Camundongos , Mutagênese Insercional , PTEN Fosfo-Hidrolase/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética
12.
Mol Cancer ; 9: 154, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20565834

RESUMO

BACKGROUND: Formation of tumour cell aggregation/emboli prolongs the survival of circulating tumour cells in the circulation, enhances their physical trapping in the micro-vasculature and thus increases metastatic spread of the cancer cells to remote sites. RESULTS: It shows here that the presence of the galactoside-binding galectin-3, whose concentration is markedly increased in the blood circulation of cancer patients, increases cancer cell homotypic aggregation under anchorage-independent conditions by interaction with the oncofetal Thomsen-Friedenreich carbohydrate (Galbeta1,3GalNAcalpha-, TF) antigen on the cancer-associated transmembrane mucin protein MUC1. The galectin-3-MUC1 interaction induces MUC1 cell surface polarization and exposure of the cell surface adhesion molecules including E-cadherin. The enhanced cancer cell homotypic aggregation by galectin-MUC1 interaction increases the survival of the tumour cells under anchorage-independent conditions by allowing them to avoid initiation of anoikis (suspension-induced apoptosis). CONCLUSION: These results suggest that the interaction between free circulating galectin-3 and cancer-associated MUC1 promotes embolus formation and survival of disseminating tumour cells in the circulation. This provides new information into our understanding of the molecular mechanisms of cancer cell haematogenous dissemination and suggests that targeting the interaction of circulating galectin-3 with MUC1 in the circulation may represent an effective therapeutic approach for preventing metastasis.


Assuntos
Anoikis , Galectina 3/sangue , Mucina-1/sangue , Caderinas/metabolismo , Fusão Celular , Linhagem Celular Tumoral , Humanos
13.
Int J Oncol ; 35(4): 693-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19724904

RESUMO

The most lethal aspect of cancer is the metastatic spread of primary tumors to distant sites. Any mechanism revealed is a target for therapy. In our previous studies, we reported that the invasive activity of the bone metastatic C4-2B prostate cancer cells could be ascribed to the reorganization of the alpha2beta1 integrin receptor and the alpha2 subunit-mediated association and activation of downstream signaling towards the activation of MMPs. In the present study, we demonstrate that expression of asialoGM1 in C4-2B cells correlates with cancer progression by influencing adhesion, migration and invasion, via reorganization of asialoGM1 and colocalization with integrin alpha2beta1. These observations reveal an uncharacterized complex of asialoGM1 with the integrin alpha2beta1 receptor promoting cancer metastatic potential through the previously identified integrin-mediated signaling pathway. The present findings promote further understanding of mechanisms by which glycosphingolipids modulate malignant properties and the results obtained here propose novel directions for future study.


Assuntos
Neoplasias Ósseas/metabolismo , Membrana Celular/metabolismo , Gangliosídeo G(M1)/metabolismo , Integrina alfa2beta1/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Neoplasias Ósseas/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Humanos , Masculino , Invasividade Neoplásica , Neoplasias da Próstata/patologia , Ligação Proteica
14.
Cancer Res ; 69(17): 6799-806, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19690136

RESUMO

Adhesion of circulating tumor cells to the blood vessel endothelium is a critical step in cancer metastasis. We show in this study that galectin-3, the concentration of which is greatly increased in the circulation of cancer patients, increases cancer cell adhesion to macrovascular and microvascular endothelial cells under static and flow conditions, increases transendothelial invasion, and decreases the latency of experimental metastasis in athymic mice. These effects of galectin-3 are shown to be a consequence of its interaction with cancer-associated MUC1, which breaks the "protective shield" of the cell-surface MUC1 by causing MUC1 polarization, leading to exposure of smaller cell-surface adhesion molecules/ligands including CD44 and ligand(s) for E-selectin. Thus, the interaction in the bloodstream of cancer patients between circulating galectin-3 and cancer cells expressing MUC1 bearing the galectin-3 ligand TF (Galbeta1,3GalNAc-) promotes metastasis. This provides insight into the molecular regulation of metastasis and has important implications for the development of novel therapeutic strategies for prevention of metastasis.


Assuntos
Galectina 3/sangue , Mucina-1/metabolismo , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Membrana Celular , Polaridade Celular , Selectina E/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Ligação Proteica
15.
Oncol Rep ; 19(1): 123-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18097585

RESUMO

The ether lipid 1-O-octadecyl-2-O-methyl-3-glycero-phosphocholine (ET-18-OMe) inhibits cell-cell adhesion and induces invasiveness of breast cancer cells. Previously, we showed that a loss of cell-cell adhesion was due to sterical hindrance of E-cadherin by the anti-adhesive properties of the cell surface mucin episialin. Here, we demonstrated that the ether lipid ET-18-OMe induced the translocation of E-cadherin and episialin to membrane microdomains, enriched in glycosphingolipids, known to be involved in cell-cell adhesion and cell signaling. In addition, it was found that E-cadherin and clusters of episialin colocalized and associated with the glycosphingolipid, MSGb5, upon treatment with ET-18-OMe. Together, these results suggest that ET-18-OMe inhibits cell-cell adhesion by inducing the translocation of E-cadherin and episialin into MSGb5-enriched membrane microdomains, which leads to clustering and colocalization of the pro-adhesive E-cadherin and the anti-adhesive episialin thereby inhibiting cell-cell adhesion.


Assuntos
Antineoplásicos/farmacologia , Caderinas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Mucina-1/efeitos dos fármacos , Éteres Fosfolipídicos/farmacologia , Caderinas/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Imunofluorescência , Glicoesfingolipídeos/metabolismo , Humanos , Imunoprecipitação , Microdomínios da Membrana/metabolismo , Mucina-1/metabolismo , Transporte Proteico/efeitos dos fármacos
16.
Nat Genet ; 39(6): 759-69, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17468756

RESUMO

We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.


Assuntos
Genes Neoplásicos/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Família Multigênica/genética , Mutagênese Insercional/genética , Transdução de Sinais , Animais , Transformação Celular Neoplásica , Epitélio/metabolismo , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus Oncogênicos/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Integração Viral
17.
J Biol Chem ; 282(1): 773-81, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17090543

RESUMO

Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 microg/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 +/- 21%, mean +/- S.D.) and 93% (93 +/- 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Galbeta1,3 GalNAc-alpha (TF)) but did not affect adhesion of MUC1-negative HCA1.7-cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-beta1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Dissacarídeos/química , Células Endoteliais/metabolismo , Galectina 3/química , Mucina-1/química , Neoplasias/metabolismo , Adesão Celular , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Galectina 3/metabolismo , Humanos , Receptores de Hialuronatos/biossíntese , Integrina beta1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes/química
18.
Breast Cancer Res ; 8(1): 102, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16469121

RESUMO

Knowledge of the genes and genetic pathways involved in onco-genesis is essential if we are to identify novel targets for cancer therapy. Insertional mutagenesis in mouse models is among the most efficient tools to detect novel cancer genes. Retrovirus-mediated insertional mutagenesis received a tremendous boost by the availability of the mouse genome sequence and new PCR methods. Application of such advances were limited to lympho-magenesis but are now also being applied to mammary tumourigenesis. Novel transposons that allow insertional mutagenesis studies to be conducted in tumors of any mouse tissue may give cancer gene discovery a further boost.


Assuntos
Transformação Celular Neoplásica , Mutagênese Insercional , Neoplasias/genética , Animais , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Reação em Cadeia da Polimerase , Retroviridae
19.
Oncogene ; 23(36): 6047-55, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15208658

RESUMO

Mouse mammary tumor virus (MMTV) infection causes a high incidence of murine mammary carcinomas by insertion of its proviral DNA in the genome of mammary epithelial cells. Retroviral insertion can activate flanking proto-oncogenes by a process called insertional mutagenesis. By sequencing the DNA adjacent to MMTV proviral insertions in mammary tumors from BALB/c mice infected with C3H-MMTV, we have found a common MMTV insertion site in the Fgf10 locus. RT-PCR studies showed that Fgf10 is expressed only in those tumors harboring a MMTV proviral insertion in this locus, suggesting that Fgf10 is a proto-oncogene. The oncogenicity of Fgf10 was evaluated in vivo by subcutaneous transplantation of retrovirally transduced HC11 mammary epithelial cells into BALB/c mice. Highly vascularized invasive subcutaneous tumors developed indicating that Fgf10 can act as an oncogene. A survey of primary human breast carcinomas revealed strongly elevated Fgf10 mRNA levels in approximately 10% of the tumors tested, suggesting that Fgf10 may also be involved in oncogenicity of a subset of human breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Neoplasias Mamárias Experimentais/genética , Vírus do Tumor Mamário do Camundongo/genética , Mutagênese Insercional , Oncogenes , Animais , Neoplasias da Mama/genética , Carcinoma/genética , Divisão Celular , Linhagem Celular Tumoral , Feminino , Fator 10 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proto-Oncogene Mas , RNA Mensageiro/metabolismo , Células Tumorais Cultivadas , Proteínas Wnt
20.
Tumour Biol ; 24(3): 116-29, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14610315

RESUMO

The mucin-type glycoprotein epiglycanin is highly expressed on the cell surface of TA3Ha mouse mammary carcinoma cells if the cells are maintained by serial intraperitoneal passage in mice. We found that upon transfer of the cells to growth in vitro in medium supplemented with fetal bovine serum, the expression level of epiglycanin slowly diminished to less than 15% of that in vivo. Repassage of the cells in vivo fully restored the expression of epiglycanin. When TA3Ha cells were cultured in media supplemented with ascites fluid obtained from mice bearing these cells, the high expression level of epiglycanin was maintained. Ascites fluid-containing medium also restored the high expression level of epiglycanin in cells cultured for prolonged periods in vitro. Human ascites fluids obtained from patients with mammary and ovary carcinoma were likewise able to induce the expression of epiglycanin, in contrast to ascites fluids obtained from noncarcinoma patients or serum of healthy individuals. The factor responsible for the upregulation of epiglycanin is heat stable and can be removed from ascites fluids by activated charcoal, suggesting that it is a steroid. Indeed, dexamethasone, at a concentration of 10(-7) mol/l, induced maximal epiglycanin expression within 4 days, and upregulation was inhibited by the glucocorticoid receptor antagonist RU486. However, the maximal induction of epiglycanin expression achieved with ascites fluid was higher, while the kinetics of the induction was much slower, but still RU486 sensitive, than upon treatment with dexamethasone. These results suggest that stimulation of epiglycanin expression by ascites also involves a glucocorticoid. However, the induction in vivo is indirect and involves a cascade of events induced by tumor-host interactions that lead to glucocorticoid-mediated induction of epiglycanin.


Assuntos
Glucocorticoides/metabolismo , Neoplasias Mamárias Animais/metabolismo , Corticosteroides/sangue , Animais , Anticorpos Monoclonais/metabolismo , Antineoplásicos Hormonais/metabolismo , Ascite/metabolismo , Neoplasias da Mama/sangue , Adesão Celular , Linhagem Celular Tumoral , Separação Celular , Cricetinae , Dexametasona/farmacologia , Eletroforese em Gel de Poliacrilamida , Estradiol/metabolismo , Feminino , Citometria de Fluxo , Antagonistas de Hormônios/farmacologia , Humanos , Glicoproteínas de Membrana/biossíntese , Camundongos , Mifepristona/farmacologia , Neoplasias Ovarianas/sangue , Testes de Precipitina , Receptores de Glucocorticoides/antagonistas & inibidores , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA