Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Transl Med ; 16(745): eade4510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691621

RESUMO

Human inborn errors of immunity include rare disorders entailing functional and quantitative antibody deficiencies due to impaired B cells called the common variable immunodeficiency (CVID) phenotype. Patients with CVID face delayed diagnoses and treatments for 5 to 15 years after symptom onset because the disorders are rare (prevalence of ~1/25,000), and there is extensive heterogeneity in CVID phenotypes, ranging from infections to autoimmunity to inflammatory conditions, overlapping with other more common disorders. The prolonged diagnostic odyssey drives excessive system-wide costs before diagnosis. Because there is no single causal mechanism, there are no genetic tests to definitively diagnose CVID. Here, we present PheNet, a machine learning algorithm that identifies patients with CVID from their electronic health records (EHRs). PheNet learns phenotypic patterns from verified CVID cases and uses this knowledge to rank patients by likelihood of having CVID. PheNet could have diagnosed more than half of our patients with CVID 1 or more years earlier than they had been diagnosed. When applied to a large EHR dataset, followed by blinded chart review of the top 100 patients ranked by PheNet, we found that 74% were highly probable to have CVID. We externally validated PheNet using >6 million records from disparate medical systems in California and Tennessee. As artificial intelligence and machine learning make their way into health care, we show that algorithms such as PheNet can offer clinical benefits by expediting the diagnosis of rare diseases.


Assuntos
Imunodeficiência de Variável Comum , Registros Eletrônicos de Saúde , Humanos , Imunodeficiência de Variável Comum/diagnóstico , Aprendizado de Máquina , Algoritmos , Masculino , Feminino , Fenótipo , Adulto , Doenças não Diagnosticadas/diagnóstico
2.
NPJ Genom Med ; 7(1): 50, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008412

RESUMO

Inference of clinical phenotypes is a fundamental task in precision medicine, and has therefore been heavily investigated in recent years in the context of electronic health records (EHR) using a large arsenal of machine learning techniques, as well as in the context of genetics using polygenic risk scores (PRS). In this work, we considered the epigenetic analog of PRS, methylation risk scores (MRS), a linear combination of methylation states. We measured methylation across a large cohort (n = 831) of diverse samples in the UCLA Health biobank, for which both genetic and complete EHR data are available. We constructed MRS for 607 phenotypes spanning diagnoses, clinical lab tests, and medication prescriptions. When added to a baseline set of predictive features, MRS significantly improved the imputation of 139 outcomes, whereas the PRS improved only 22 (median improvement for methylation 10.74%, 141.52%, and 15.46% in medications, labs, and diagnosis codes, respectively, whereas genotypes only improved the labs at a median increase of 18.42%). We added significant MRS to state-of-the-art EHR imputation methods that leverage the entire set of medical records, and found that including MRS as a medical feature in the algorithm significantly improves EHR imputation in 37% of lab tests examined (median R2 increase 47.6%). Finally, we replicated several MRS in multiple external studies of methylation (minimum p-value of 2.72 × 10-7) and replicated 22 of 30 tested MRS internally in two separate cohorts of different ethnicity. Our publicly available results and weights show promise for methylation risk scores as clinical and scientific tools.

3.
Nat Commun ; 13(1): 1093, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232963

RESUMO

Mendelian Randomization (MR) studies are threatened by population stratification, batch effects, and horizontal pleiotropy. Although a variety of methods have been proposed to mitigate those problems, residual biases may still remain, leading to highly statistically significant false positives in large databases. Here we describe a suite of sensitivity analysis tools that enables investigators to quantify the robustness of their findings against such validity threats. Specifically, we propose the routine reporting of sensitivity statistics that reveal the minimal strength of violations necessary to explain away the MR results. We further provide intuitive displays of the robustness of the MR estimate to any degree of violation, and formal bounds on the worst-case bias caused by violations multiple times stronger than observed variables. We demonstrate how these tools can aid researchers in distinguishing robust from fragile findings by examining the effect of body mass index on diastolic blood pressure and Townsend deprivation index.


Assuntos
Pleiotropia Genética , Análise da Randomização Mendeliana , Viés , Pressão Sanguínea/genética , Índice de Massa Corporal , Progressão da Doença , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana/métodos
4.
Sci Rep ; 11(1): 15755, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344934

RESUMO

In two-thirds of intensive care unit (ICU) patients and 90% of surgical patients, arterial blood pressure (ABP) is monitored non-invasively but intermittently using a blood pressure cuff. Since even a few minutes of hypotension increases the risk of mortality and morbidity, for the remaining (high-risk) patients ABP is measured continuously using invasive devices, and derived values are extracted from the recorded waveforms. However, since invasive monitoring is associated with major complications (infection, bleeding, thrombosis), the ideal ABP monitor should be both non-invasive and continuous. With large volumes of high-fidelity physiological waveforms, it may be possible today to impute a physiological waveform from other available signals. Currently, the state-of-the-art approaches for ABP imputation only aim at intermittent systolic and diastolic blood pressure imputation, and there is no method that imputes the continuous ABP waveform. Here, we developed a novel approach to impute the continuous ABP waveform non-invasively using two continuously-monitored waveforms that are currently part of the standard-of-care, the electrocardiogram (ECG) and photo-plethysmogram (PPG), by adapting a deep learning architecture designed for image segmentation. Using over 150,000 min of data collected at two separate health systems from 463 patients, we demonstrate that our model provides a highly accurate prediction of the continuous ABP waveform (root mean square error 5.823 (95% CI 5.806-5.840) mmHg), as well as the derived systolic (mean difference 2.398 ± 5.623 mmHg) and diastolic blood pressure (mean difference - 2.497 ± 3.785 mmHg) compared to arterial line measurements. Our approach can potentially be used to measure blood pressure continuously and non-invasively for all patients in the acute care setting, without the need for any additional instrumentation beyond the current standard-of-care.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial/métodos , Aprendizado Profundo , Hipertensão/fisiopatologia , Hipotensão/fisiopatologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Análise de Onda de Pulso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Vaccines (Basel) ; 9(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064775

RESUMO

Bacillus Calmette-Guerin (BCG) is a live attenuated form of Mycobacterium bovis that was developed 100 years ago as a vaccine against tuberculosis (TB) and has been used ever since to vaccinate children globally. It has also been used as the first-line treatment in patients with nonmuscle invasive bladder cancer (NMIBC), through repeated intravesical applications. Numerous studies have shown that BCG induces off-target immune effects in various pathologies. Accumulating data argue for the critical role of the immune system in the course of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, we tested whether repeated exposure to BCG during the treatment of NMIBC is associated with the risk of developing AD and PD. We presented a multi-center retrospective cohort study with patient data collected between 2000 and 2019 that included 12,185 bladder cancer (BC) patients, of which 2301 BCG-treated patients met all inclusion criteria, with a follow-up of 3.5 to 7 years. We considered the diagnosis date of AD and nonvascular dementia cases for BC patients. The BC patients were partitioned into those who underwent a transurethral resection of the bladder tumor followed by BCG therapy, and a disjoint group that had not received such treatment. By applying Cox proportional hazards (PH) regression and competing for risk analyses, we found that BCG treatment was associated with a significantly reduced risk of developing AD, especially in the population aged 75 years or older. The older population (≥75 years, 1578 BCG treated, and 5147 controls) showed a hazard ratio (HR) of 0.726 (95% CI: 0.529-0.996; p-value = 0.0473). While in a hospital-based cohort, BCG treatment resulted in an HR of 0.416 (95% CI: 0.203-0.853; p-value = 0.017), indicating a 58% lower risk of developing AD. The risk of developing PD showed the same trend with a 28% reduction in BCG-treated patients, while no BCG beneficial effect was observed for other age-related events such as Type 2 diabetes (T2D) and stroke. We attributed BCG's beneficial effect on neurodegenerative diseases to a possible activation of long-term nonspecific immune effects. We proposed a prospective study in elderly people for testing intradermic BCG inoculation as a potential protective agent against AD and PD.

6.
NPJ Digit Med ; 4(1): 44, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686212

RESUMO

One of the core challenges in applying machine learning and artificial intelligence to medicine is the limited availability of annotated medical data. Unlike in other applications of machine learning, where an abundance of labeled data is available, the labeling and annotation of medical data and images require a major effort of manual work by expert clinicians who do not have the time to annotate manually. In this work, we propose a new deep learning technique (SLIVER-net), to predict clinical features from 3-dimensional volumes using a limited number of manually annotated examples. SLIVER-net is based on transfer learning, where we borrow information about the structure and parameters of the network from publicly available large datasets. Since public volume data are scarce, we use 2D images and account for the 3-dimensional structure using a novel deep learning method which tiles the volume scans, and then adds layers that leverage the 3D structure. In order to illustrate its utility, we apply SLIVER-net to predict risk factors for progression of age-related macular degeneration (AMD), a leading cause of blindness, from optical coherence tomography (OCT) volumes acquired from multiple sites. SLIVER-net successfully predicts these factors despite being trained with a relatively small number of annotated volumes (hundreds) and only dozens of positive training examples. Our empirical evaluation demonstrates that SLIVER-net significantly outperforms standard state-of-the-art deep learning techniques used for medical volumes, and its performance is generalizable as it was validated on an external testing set. In a direct comparison with a clinician panel, we find that SLIVER-net also outperforms junior specialists, and identifies AMD progression risk factors similarly to expert retina specialists.

7.
PLoS One ; 15(9): e0239474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960917

RESUMO

Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pacientes Internados , Aprendizado de Máquina , Pneumonia Viral/diagnóstico , Adulto , Idoso , Área Sob a Curva , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Humanos , Los Angeles , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Pessoa de Meia-Idade , Pandemias , Reação em Cadeia da Polimerase , Estudos Retrospectivos , SARS-CoV-2
8.
iScience ; 23(6): 101185, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32504875

RESUMO

Single-cell RNA-sequencing (scRNA-seq) is a set of technologies used to profile gene expression at the level of individual cells. Although the throughput of scRNA-seq experiments is steadily growing in terms of the number of cells, large datasets are not yet commonly generated owing to prohibitively high costs. Integrating multiple datasets into one can improve power in scRNA-seq experiments, and efficient integration is very important for downstream analyses such as identifying cell-type-specific eQTLs. State-of-the-art scRNA-seq integration methods are based on the mutual nearest neighbor paradigm and fail to both correct for batch effects and maintain the local structure of the datasets. In this paper, we propose a novel scRNA-seq dataset integration method called BATMAN (BATch integration via minimum-weight MAtchiNg). Across multiple simulations and real datasets, we show that our method significantly outperforms state-of-the-art tools with respect to existing metrics for batch effects by up to 80% while retaining cell-to-cell relationships.

9.
Genome Biol ; 21(1): 71, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183840

RESUMO

BACKGROUND: Recent advancements in next-generation sequencing have rapidly improved our ability to study genomic material at an unprecedented scale. Despite substantial improvements in sequencing technologies, errors present in the data still risk confounding downstream analysis and limiting the applicability of sequencing technologies in clinical tools. Computational error correction promises to eliminate sequencing errors, but the relative accuracy of error correction algorithms remains unknown. RESULTS: In this paper, we evaluate the ability of error correction algorithms to fix errors across different types of datasets that contain various levels of heterogeneity. We highlight the advantages and limitations of computational error correction techniques across different domains of biology, including immunogenomics and virology. To demonstrate the efficacy of our technique, we apply the UMI-based high-fidelity sequencing protocol to eliminate sequencing errors from both simulated data and the raw reads. We then perform a realistic evaluation of error-correction methods. CONCLUSIONS: In terms of accuracy, we find that method performance varies substantially across different types of datasets with no single method performing best on all types of examined data. Finally, we also identify the techniques that offer a good balance between precision and sensitivity.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Benchmarking , Biologia Computacional/métodos , Humanos , Receptores de Antígenos de Linfócitos T/genética , Vírus/genética , Sequenciamento Completo do Genoma
10.
Br J Anaesth ; 123(6): 877-886, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31627890

RESUMO

BACKGROUND: Rapid, preoperative identification of patients with the highest risk for medical complications is necessary to ensure that limited infrastructure and human resources are directed towards those most likely to benefit. Existing risk scores either lack specificity at the patient level or utilise the American Society of Anesthesiologists (ASA) physical status classification, which requires a clinician to review the chart. METHODS: We report on the use of machine learning algorithms, specifically random forests, to create a fully automated score that predicts postoperative in-hospital mortality based solely on structured data available at the time of surgery. Electronic health record data from 53 097 surgical patients (2.01% mortality rate) who underwent general anaesthesia between April 1, 2013 and December 10, 2018 in a large US academic medical centre were used to extract 58 preoperative features. RESULTS: Using a random forest classifier we found that automatically obtained preoperative features (area under the curve [AUC] of 0.932, 95% confidence interval [CI] 0.910-0.951) outperforms Preoperative Score to Predict Postoperative Mortality (POSPOM) scores (AUC of 0.660, 95% CI 0.598-0.722), Charlson comorbidity scores (AUC of 0.742, 95% CI 0.658-0.812), and ASA physical status (AUC of 0.866, 95% CI 0.829-0.897). Including the ASA physical status with the preoperative features achieves an AUC of 0.936 (95% CI 0.917-0.955). CONCLUSIONS: This automated score outperforms the ASA physical status score, the Charlson comorbidity score, and the POSPOM score for predicting in-hospital mortality. Additionally, we integrate this score with a previously published postoperative score to demonstrate the extent to which patient risk changes during the perioperative period.


Assuntos
Registros Eletrônicos de Saúde/estatística & dados numéricos , Nível de Saúde , Mortalidade Hospitalar , Aprendizado de Máquina , Complicações Pós-Operatórias/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , California , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pré-Operatório , Medição de Risco , Fatores de Risco , Adulto Jovem
11.
Nat Commun ; 10(1): 1393, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918265

RESUMO

Computational omics methods packaged as software have become essential to modern biological research. The increasing dependence of scientists on these powerful software tools creates a need for systematic assessment of these methods, known as benchmarking. Adopting a standardized benchmarking practice could help researchers who use omics data to better leverage recent technological innovations. Our review summarizes benchmarking practices from 25 recent studies and discusses the challenges, advantages, and limitations of benchmarking across various domains of biology. We also propose principles that can make computational biology benchmarking studies more sustainable and reproducible, ultimately increasing the transparency of biomedical data and results.


Assuntos
Benchmarking , Biologia Computacional , Genômica , Software , Humanos , Metabolômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA