Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 87(5): 3825-3833, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188763

RESUMO

An intermolecular RhII-catalyzed, formal (4 + 3)-cycloaddition between vinyl ketenes and N-sulfonyl-1,2,3-triazoles for the construction of azepinone products is described. Employing vinyl ketenes as a 1,4-dipolar surrogate, instead of the more commonly used dienyl moieties, allows for the intermolecular and selective formation of azepinone products over a potential (3 + 2)-cycloadduct under mild reaction conditions allows for the generation of azepinone products in up to 98% yield.


Assuntos
Ródio , Catálise , Reação de Cicloadição , Triazóis
2.
ChemMedChem ; 17(4): e202100512, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34994084

RESUMO

Deregulation of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) plays a significant role in developmental brain defects, early-onset neurodegeneration, neuronal cell loss, dementia, and several types of cancer. Herein, we report the discovery of three new classes of N-heterocyclic DYRK1A inhibitors based on the potent, yet toxic kinase inhibitors, harmine and harmol. An initial in vitro evaluation of the small molecule library assembled revealed that the core heterocyclic motifs benzofuranones, oxindoles, and pyrrolones, showed statistically significant DYRK1A inhibition. Further, the utilization of a low cost, high-throughput functional genomic in vivo model system to identify small molecule inhibitors that normalize DYRK1A overexpression phenotypes is described. This in vivo assay substantiated the in vitro results, and the resulting correspondence validates generated classes as architectural motifs that serve as potential DYRK1A inhibitors. Further expansion and analysis of these core compound structures will allow discovery of safe, more effective chemical inhibitors of DYRK1A to ameliorate phenotypes caused by DYRK1A overexpression.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Harmina/análogos & derivados , Harmina/farmacologia , Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenho de Fármacos , Harmina/síntese química , Harmina/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Quinases Dyrk
3.
J Org Chem ; 86(3): 2667-2681, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33448846

RESUMO

The stereoselective synthesis of terminal bromo-substituted propargylamines via in situ generation of lithium bromoacetylide from 1,2-dibromoethene and addition to Ellman chiral N-tert-butanesulfinyl aldimines is reported. Modest to good yields (43-85%) and diastereoselectivity (dr = 3:1 to >20:1) were achieved for a range of aryl, heteroaryl, alkyl, and α,ß-unsaturated substrates. Terminal bromo-substituted propargylamines prepared via this method can be directly used in the frequently employed Cadiot-Chodkiewicz coupling to produce functionalized diynes. The method reported here increases the structural diversity of chiral terminal bromo-substituted propargylamines that can be readily synthesized as previous methods for the stereoselective synthesis of these compounds rely on amino acid precursors from the chiral pool.


Assuntos
Iminas , Lítio , Pargilina/análogos & derivados , Propilaminas , Estereoisomerismo
4.
Org Lett ; 22(16): 6605-6609, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806141

RESUMO

A Pd0-catalyzed formal (4 + 1)-cycloaddition approach to 2,3-disubstituted dihydroindoles is described. The diastereoselective formation of dihydroindoles that is highlighted by a carbene migratory insertion/reductive elimination sequence proceeding via a π-allyl PdII-species compliments existing methods of indoline assembly.

5.
Chemistry ; 25(14): 3662-3674, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30650214

RESUMO

The 1,2,3-triazole has been successfully utilized as an amide bioisostere in multiple therapeutic contexts. Based on this precedent, triazole analogues derived from VX-809 and VX-770, prominent amide-containing modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), were synthesized and evaluated for CFTR modulation. Triazole 11, derived from VX-809, displayed markedly reduced efficacy in F508del-CFTR correction in cellular TECC assays in comparison to VX-809. Surprisingly, triazole analogues derived from potentiator VX-770 displayed no potentiation of F508del, G551D, or WT-CFTR in cellular Ussing chamber assays. However, patch clamp analysis revealed that triazole 60 potentiates WT-CFTR similarly to VX-770. The efficacy of 60 in the cell-free patch clamp experiment suggests that the loss of activity in the cellular assay could be due to the inability of VX-770 triazole derivatives to reach the CFTR binding site. Moreover, in addition to the negative impact on biological activity, triazoles in both structural classes displayed decreased metabolic stability in human microsomes relative to the analogous amides. In contrast to the many studies that demonstrate the advantages of using the 1,2,3-triazole, these findings highlight the negative impacts that can arise from replacement of the amide with the triazole and suggest that caution is warranted when considering use of the 1,2,3-triazole as an amide bioisostere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA