Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Photochem Photobiol Sci ; 15(11): 1417-1432, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27734050

RESUMO

Although rhodamine dyes have been extensively studied for a variety of applications, many details of their photophysics are not yet fully understood, including the possible presence of a charge separated electronic state lying near the optically active excited singlet state and the role of twisting substituent groups in excited-state quenching. To address this, a large library of rhodamine dyes was studied in which the chalcogen is varied from O, to S and Se and the aryl group is either absent (in the pyronin series) or is a phenyl or thienyl substituent. Through an analysis of steady-state absorption spectroscopy, electrochemistry, X-ray crystallography, and quantum mechanical calculations, we show that the lowest unoccupied molecular orbital (LUMO) energy decreases in the O → S → Se series and when a phenyl or thienyl substituent is added. The reduction of the LUMO energy is larger for thienyl species in which the aromatic group has increased torsional flexibility. Excited state lifetimes and fluorescence quantum yields of these dyes in a high and low polarity solvent reveal dramatically different photophysics between chromophores with phenyl and thienyl substituents, due to a combination of torsional and inductive effects. In the pyronin and phenyl-substituted species, non-radiative decay can occur through an amine-to-xanthylium core charge separated state that is stabilized in a highly polar environment. In the thienyl derivatives, a lower energy excited state, which we term S'1, is accessed from S1via rotation of the aryl group and the excited state population rapidly equilibrates between S1 and S'1 in 6-30 ps. Preliminary photochemical hydrogen production data display the potential application of the thienyl derivatives for conversion of solar energy.


Assuntos
Corantes/química , Rodaminas/química , Cristalografia por Raios X , Fotoquímica , Solventes
2.
J Immunol ; 197(5): 1631-41, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27456485

RESUMO

T lymphocytes play a central role in many human immunologic disorders, including autoimmune and alloimmune diseases. In hematopoietic stem cell transplantation, acute graft-versus-host-disease (GVHD) is caused by an attack on the recipient's tissues from donor allogeneic T cells. Selectively depleting GVHD-causing cells prior to transplant may prevent GVHD. In this study, we evaluated 24 chalcogenorhodamine photosensitizers for their ability to selectively deplete reactive T lymphocytes and identified the photosensitizer 2-Se-Cl, which accumulates in stimulated T cells in proportion to oxidative phosphorylation. The photosensitizer is also a potent stimulator of P-glycoprotein (P-gp). Enhanced P-gp activity promotes the efficient removal of photosensitizer not sequestered in mitochondria and protects resting lymphocytes that are essential for antipathogen and antitumor responses. To evaluate the selective depletion of alloimmune responses, donor C57BL/6 splenocytes were cocultured for 5 d with irradiated BALB/c splenocytes and then photodepleted (PD). PD-treated splenocytes were infused into lethally irradiated BALB/c (same-party) or C3H/HeJ (third-party) mice. Same-party mice that received PD-treated splenocytes at the time of transplant lived 100 d without evidence of GVHD. In contrast, all mice that received untreated primed splenocytes and third-party mice that received PD-treated splenocytes died of lethal GVHD. To evaluate the preservation of antiviral immune responses, acute lymphocytic choriomeningitis virus infection was used. After photodepletion, expansion of Ag-specific naive CD8(+) T cells and viral clearance remained fully intact. The high selectivity of this novel photosensitizer may have broad applications and provide alternative treatment options for patients with T lymphocyte-mediated diseases.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Depleção Linfocítica/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Metabolismo Energético , Doença Enxerto-Hospedeiro/imunologia , Humanos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/isolamento & purificação , Fármacos Fotossensibilizantes/farmacologia , Transplante Homólogo
3.
Bioorg Med Chem ; 24(17): 3918-3931, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27301678

RESUMO

Extracorporeal photopheresis (ECP) has been used successfully in the treatment of erythrodermic cutaneous T cell lymphoma (CTCL), and other T cell-mediated disorders. Not all patients obtain a significant or durable response from ECP. The design of a selective photosensitizer that spares desirable lymphocytes while targeting malignant T cells may promote cytotoxic T cell responses and improve outcomes after ECP. A series of selenorhodamines built with variations of the Texas red core targeted the mitochondria of malignant T cells, were phototoxic to malignant T cells presumably via their ability to generate singlet oxygen, and were transported by P-glycoprotein (P-gp). To determine the selectivity of the photosensitizers in the ECP milieu, staphylococcal enterotoxin B (SEB)-stimulated and non-stimulated human lymphocytes were combined with HUT-78 cells (a CTCL) to simulate ECP. The amide-containing analogues of the selenorhodamines were transported more rapidly than the thioamide analogues in monolayers of MDCKII-MDR1 cells and, consequently, were extruded more rapidly from P-gp-expressing T cells than the corresponding thioamide analogues. Selenorhodamine 6 with the Texas red core and a piperidylamide functionality was phototoxic to >90% of malignant T cells while sparing >60% of both stimulated and non-stimulated T cells. In the resting T cells, (63±7)% of the CD4+ T cell compartment, and (78±2.5)% of the CD8+ cytotoxic T cell population were preserved, resulting in an enrichment of healthy and cytotoxic T cells after photodepletion.


Assuntos
Compostos Organosselênicos/farmacologia , Fotoferese , Fármacos Fotossensibilizantes/farmacologia , Rodaminas/farmacologia , Linfócitos T/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Humanos , Luz , Linfoma , Mitocôndrias/metabolismo , Compostos Organosselênicos/síntese química , Fármacos Fotossensibilizantes/síntese química , Rodaminas/síntese química , Linfócitos T/metabolismo , Verapamil/farmacologia
4.
J Med Chem ; 57(20): 8622-34, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25250825

RESUMO

We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Compostos Organosselênicos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Técnicas de Química Sintética , Cães , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Células Madin Darby de Rim Canino/efeitos dos fármacos , Camundongos , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Rodaminas/farmacocinética , Oxigênio Singlete/metabolismo , Espectrometria de Fluorescência , Testes de Toxicidade , Verapamil/farmacologia
5.
Organometallics ; 33(10): 2628-2640, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24904192

RESUMO

Analogues of Texas red incorporating the heavy chalcogens S, Se, and Te atoms in the xanthylium core were prepared from the addition of aryl Grignard reagents to appropriate chalcogenoxanthone precursors. The xanthones were prepared via directed metalation of amide precursors, addition of dichalcogenide electrophiles, and electrophilic cyclization of the resulting chalcogenides with phosphorus oxychloride and triethylamine. The Texas red analogues incorporate two fused julolidine rings containing the rhodamine nitrogen atoms. Analogues containing two "half-julolidine" groups (a trimethyltetrahydroquinoline) and one julolidine and one "half-julolidine" were also prepared. The photophysics of the Texas red analogues were examined. The S-analogues were highly fluorescent, the Se-analogues generated single oxygen (1O2) efficiently upon irradiation, and the Te-analogues were easily oxidized to rhodamines with the telluroxide oxidation state. The tellurorhodamine telluroxides absorb at wavelengths ≥690 nm and emit with fluorescence maxima >720 nm. A mesityl-substituted tellurorhodamine derivative localized in the mitochondria of Colo-26 cells (a murine colon carcinoma cell line) and was oxidized in vitro to the fluorescent telluroxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA