Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nanoscale ; 16(1): 223-236, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38053416

RESUMO

A detailed comparison of the capabilities of electron microscopy and nano-infrared (IR) microscopy for imaging microbial nanostructures has been carried out for the first time. The surface sensitivity, chemical specificity, and non-destructive nature of spectroscopic mapping is shown to offer significant advantages over transmission electron microscopy (TEM) for the study of biological samples. As well as yielding important topographical information, the distribution of amides, lipids, and carbohydrates across cross-sections of bacterial (Escherichia coli, Staphylococcus aureus) and fungal (Candida albicans) cells was demonstrated using PiFM. The unique information derived from this new mode of spectroscopic mapping of the surface chemistry and biology of microbial cell walls and membranes, may provide new insights into fungal/bacterial cell function as well as having potential use in determining mechanisms of antimicrobial resistance, especially those targeting the cell wall.


Assuntos
Nanoestruturas , Microscopia de Força Atômica , Nanoestruturas/química , Microscopia Eletrônica de Transmissão , Candida albicans , Escherichia coli , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
2.
Biomolecules ; 13(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759766

RESUMO

Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including Pseudomonas aeruginosa. Previous studies suggested that the disruption of calcium (Ca2+)-DNA binding within bacterial biofilms and dysregulation of quorum sensing (QS) were key factors in these observed effects. To further investigate the contribution of Ca2+ binding, G-block (OligoG) and M-block alginate oligosaccharides (OligoM) with comparable average size DPn 19 but contrasting Ca2+ binding properties were prepared. Fourier-transform infrared spectroscopy demonstrated prolonged binding of alginate oligosaccharides to the pseudomonal cell membrane even after hydrodynamic shear treatment. Molecular dynamics simulations and isothermal titration calorimetry revealed that OligoG exhibited stronger interactions with bacterial LPS than OligoM, although this difference was not mirrored by differential reductions in bacterial growth. While confocal laser scanning microscopy showed that both agents demonstrated similar dose-dependent reductions in biofilm formation, OligoG exhibited a stronger QS inhibitory effect and increased potentiation of the antibiotic azithromycin in minimum inhibitory concentration and biofilm assays. This study demonstrates that the anti-microbial effects of alginate oligosaccharides are not purely influenced by Ca2+-dependent processes but also by electrostatic interactions that are common to both G-block and M-block structures.


Assuntos
Alginatos , Pseudomonas aeruginosa , Peso Molecular , Relação Estrutura-Atividade , Alginatos/farmacologia , Antibacterianos/farmacologia
3.
J Oral Microbiol ; 15(1): 2241326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534218

RESUMO

Background: Peri-implantitis has become an inexorable clinical challenge in implantology. Topical immunomodulatory epoxy-tiglianes (EBCs), derived from the Queensland blushwood tree, which induce remodeling and resolve dermal infection via induction of the inflammasome and biofilm disruption, may offer a novel therapeutic approach. Design: In vitro antimicrobial activity of EBC structures (EBC-46, EBC-1013 and EBC-147) against Streptococcus mutans, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in minimum inhibitory concentration, growth curve and permeabilization assays were determined. Antibiofilm activity was assessed using minimum biofilm eradication concentration (MBEC) experiments. Biofilm formation and disruption assays were analyzed using confocal laser scanning microscopy, scanning electron microscopy and direct plate counting. Results: The observed antimicrobial efficacy of the tested compounds (EBC-1013 > EBC-46 > EBC-147) was directly related to significant membrane permeabilization and growth inhibition (p < 0.05) against planktonic S. mutans and P. gingivalis. Antibiofilm activity was evident in MBEC assays, with S. mutans biofilm formation assays revealing significantly lower biomass volume and increased DEAD:LIVE cell ratio observed for EBC-1013 (p < 0.05). Furthermore, biofilm disruption assays on titanium discs induced significant biofilm disruption in S. mutans and P. gingivalis (p < 0.05). Conclusions: EBC-1013 is a safe, semi-synthetic, compound, demonstrating clear antimicrobial biofilm disruption potential in peri-implantitis.

4.
Front Cell Infect Microbiol ; 13: 1122340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798083

RESUMO

Background: The increasing prevalence of invasive fungal infections in immuno-compromised patients is a considerable cause of morbidity and mortality. With the rapid emergence of antifungal resistance and an inadequate pipeline of new therapies, novel treatment strategies are now urgently required. Methods: The antifungal activity of the alginate oligosaccharide OligoG in conjunction with nystatin was tested against a range of Candida spp. (C. albicans, C. glabrata, C. parapsilosis, C. auris, C. tropicalis and C. dubliniensis), in both planktonic and biofilm assays, to determine its potential clinical utility to enhance the treatment of candidal infections. The effect of OligoG (0-6%) ± nystatin on Candida spp. was examined in minimum inhibitory concentration (MIC) and growth curve assays. Antifungal effects of OligoG and nystatin treatment on biofilm formation and disruption were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and ATP cellular viability assays. Effects on the cell membrane were determined using permeability assays and transmission electron microscopy (TEM). Results: MIC and growth curve assays demonstrated the synergistic effects of OligoG (0-6%) with nystatin, resulting in an up to 32-fold reduction in MIC, and a significant reduction in the growth of C. parapsilosis and C. auris (minimum significant difference = 0.2 and 0.12 respectively). CLSM and SEM imaging demonstrated that the combination treatment of OligoG (4%) with nystatin (1 µg/ml) resulted in significant inhibition of candidal biofilm formation on glass and clinical grade silicone surfaces (p < 0.001), with increased cell death (p < 0.0001). The ATP biofilm disruption assay demonstrated a significant reduction in cell viability with OligoG (4%) alone and the combined OligoG/nystatin (MIC value) treatment (p < 0.04) for all Candida strains tested. TEM studies revealed the combined OligoG/nystatin treatment induced structural reorganization of the Candida cell membrane, with increased permeability when compared to the untreated control (p < 0.001). Conclusions: Antimicrobial synergy between OligoG and nystatin against Candida spp. highlights the potential utility of this combination therapy in the prevention and topical treatment of candidal biofilm infections, to overcome the inherent tolerance of biofilm structures to antifungal agents.


Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Nistatina/farmacologia , Nistatina/metabolismo , Alginatos/farmacologia , Alginatos/química , Alginatos/metabolismo , Candida , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida tropicalis , Candida glabrata , Biofilmes , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
5.
Sci Transl Med ; 14(662): eabn3758, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103515

RESUMO

The management of antibiotic-resistant, bacterial biofilm infections in chronic skin wounds is an increasing clinical challenge. Despite advances in diagnosis, many patients do not derive benefit from current anti-infective/antibiotic therapies. Here, we report a novel class of naturally occurring and semisynthetic epoxy-tiglianes, derived from the Queensland blushwood tree (Fontainea picrosperma), and demonstrate their antimicrobial activity (modifying bacterial growth and inducing biofilm disruption), with structure/activity relationships established against important human pathogens. In vitro, the lead candidate EBC-1013 stimulated protein kinase C (PKC)-dependent neutrophil reactive oxygen species (ROS) induction and NETosis and increased expression of wound healing-associated cytokines, chemokines, and antimicrobial peptides in keratinocytes and fibroblasts. In vivo, topical EBC-1013 induced rapid resolution of infection with increased matrix remodeling in acute thermal injuries in calves. In chronically infected diabetic mouse wounds, treatment induced cytokine/chemokine production, inflammatory cell recruitment, and complete healing (in six of seven wounds) with ordered keratinocyte differentiation. These results highlight a nonantibiotic approach involving contrasting, orthogonal mechanisms of action combining targeted biofilm disruption and innate immune induction in the treatment of chronic wounds.


Assuntos
Forbóis , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Humanos , Queratinócitos , Camundongos , Cicatrização
6.
Sci Rep ; 12(1): 4986, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322119

RESUMO

In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), the production of viscous mucin reduces pulmonary function and represents an effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy). High-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) revealed that the presence of AS medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate oligosaccharide (OligoG CF-5/20) significantly improved colistin diffusion by 3.7 times through mucin-rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF-5/20 was shown (using confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small molecule delivery across clinically-relevant diffusion barriers. The findings indicate the significant loss of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics to improve antimicrobial efficacy and lower antibiotic exposure.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Colistina/farmacologia , Colistina/uso terapêutico , Fibrose Cística/microbiologia , Humanos , Mucinas/metabolismo , Oligossacarídeos/química , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
7.
NPJ Biofilms Microbiomes ; 7(1): 13, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547326

RESUMO

Novel therapeutics designed to target the polymeric matrix of biofilms requires innovative techniques to accurately assess their efficacy. Here, multiple particle tracking (MPT) was developed to characterize the physical and mechanical properties of antimicrobial resistant (AMR) bacterial biofilms and to quantify the effects of antibiotic treatment. Studies employed nanoparticles (NPs) of varying charge and size (40-500 nm) in Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA) biofilms and also in polymyxin B (PMB) treated Escherichia coli biofilms of PMB-sensitive (PMBSens) IR57 and PMB-resistant (PMBR) PN47 strains. NP size-dependent and strain-related differences in the diffusion coefficient values of biofilms were evident between PAO1 and MRSA. Dose-dependent treatment effects induced by PMB in PMBSens E. coli biofilms included increases in diffusion and creep compliance (P < 0.05), not evident in PMB treatment of PMBR E. coli biofilms. Our results highlight the ability of MPT to quantify the diffusion and mechanical effects of antibiotic therapies within the AMR biofilm matrix, offering a valuable tool for the pre-clinical screening of anti-biofilm therapies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Polimixina B/farmacologia , Pseudomonas aeruginosa/fisiologia , Imagem Individual de Molécula/métodos , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Confocal , Nanopartículas , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos
8.
mSphere ; 6(1)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472983

RESUMO

Chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of P. aeruginosa in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations). Mutants isolated after OligoG CF-5/20 treatment typically had a reduced biofilm-forming ability and altered motility profile. Genotypically, OligoG CF-5/20 provided no selective pressure on genomic mutations within morphotypes. Chronic exposure to azithromycin, a commonly prescribed antibiotic in CF patients, with or without OligoG CF-5/20 in the biofilm evolution model also had no effect on rates of resistance acquisition. Interestingly, however, cross-resistance to other antibiotics (e.g., aztreonam) was reduced in the presence of OligoG CF-5/20. Collectively, these findings show no apparent adverse effects from long-term exposure to OligoG CF-5/20, instead resulting in both fewer colonies with multidrug resistance (MDR)-associated phenotypes and improved antibiotic susceptibility of P. aeruginosaIMPORTANCE The emergence of multidrug-resistant (MDR) pathogens within biofilms in the cystic fibrosis lung results in increased morbidity. An inhalation therapy derived from alginate, OligoG CF-5/20, is currently in clinical trials for cystic fibrosis patients. OligoG CF-5/20 has been shown to alter sputum viscoelasticity, disrupt mucin polymer networks, and disrupt MDR pseudomonal biofilms. Long-term exposure to inhaled therapeutics may induce selective evolutionary pressures on bacteria within the lung biofilm. Here, a bead biofilm model with repeated exposure of P. aeruginosa to OligoG CF-5/20 (alone and in combination with azithromycin) was conducted to study these long-term effects and characterize the phenotypic and genotypic adaptations which result. These findings, over 6 weeks, show that long-term use of OligoG CF-5/20 does not lead to extensive mutational changes and may potentially decrease the pathogenicity of the bacterial biofilm and improve the susceptibility of P. aeruginosa to other classes of antibiotics.


Assuntos
Adaptação Fisiológica/genética , Alginatos/química , Biofilmes/efeitos dos fármacos , Genótipo , Fenótipo , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Escarro/microbiologia , Fatores de Tempo
9.
Biomolecules ; 11(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466399

RESUMO

Clays attributed to have medicinal properties have been used since prehistoric times and are still used today as complementary medicines, which has given rise to unregulated "bioceutical" clays to treat skin conditions. Recently, clays with antibacterial characteristics have been proposed as alternatives to antibiotics, potentially overcoming modern day antibiotic resistance. Clays with suggested antibacterial properties were examined to establish their effects on common wound-infecting bacteria. Geochemical, microscopical, and toxicological characterization of clay particulates, their suspensions and filtered leachates was performed on THP-1 and HaCaT cell lines. Cytoskeletal toxicity, cell proliferation/viability (MTT assays), and migration (scratch wounds) were further evaluated. Clays were assayed for antibacterial efficacy using minimum inhibitory concentration assays. All clays possessed a mineral content with antibacterial potential; however, clay leachates contained insufficient ions to have any antibacterial effects. All clay leachates displayed toxicity towards THP-1 monocytes, while clay suspensions showed less toxicity, suggesting immunogenicity. Reduced clay cytotoxicity on HaCaTs was shown, as many leachates stimulated wound-healing responses. The "Green" clay exhibited antibacterial effects and only in suspension, which was lost upon neutralization. pH and its interaction with clay particle surface charge is more significant than previously understood to emphasize dangers of unregulated marketing and unsubstantiated bioceutical claims.


Assuntos
Argila , Saúde , Actinas/metabolismo , Antibacterianos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Testes de Sensibilidade Microbiana , Células THP-1 , Imagem com Lapso de Tempo , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/patologia
10.
Pharmaceutics ; 12(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187332

RESUMO

The recent emergence of resistance to colistin, an antibiotic of last resort with dose-limiting toxicity, has highlighted the need for alternative approaches to combat infection. This study aimed to generate and characterise alginate oligosaccharide ("OligoG")-polymyxin (polymyxin B and E (colistin)) conjugates to improve the effectiveness of these antibiotics. OligoG-polymyxin conjugates (amide- or ester-linked), with molecular weights of 5200-12,800 g/mol and antibiotic loading of 6.1-12.9% w/w, were reproducibly synthesised. In vitro inflammatory cytokine production (tumour necrosis factor alpha (TNFα) ELISA) and cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) of colistin (2.2-9.3-fold) and polymyxin B (2.9-27.2-fold) were significantly decreased by OligoG conjugation. Antimicrobial susceptibility tests (minimum inhibitory concentration (MIC), growth curves) demonstrated similar antimicrobial efficacy of ester- and amide-linked conjugates to that of the parent antibiotic but with more sustained inhibition of bacterial growth. OligoG-polymyxin conjugates exhibited improved selectivity for Gram-negative bacteria in comparison to mammalian cells (approximately 2-4-fold). Both OligoG-colistin conjugates caused significant disruption of Pseudomonas aeruginosa biofilm formation and induced bacterial death (confocal laser scanning microscopy). When conjugates were tested in an in vitro "time-to-kill" (TTK) model using Acinetobacter baumannii, only ester-linked conjugates reduced viable bacterial counts (~2-fold) after 4 h. Bi-functional OligoG-polymyxin conjugates have potential therapeutic benefits in the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, directly reducing toxicity whilst retaining antimicrobial and antibiofilm activities.

11.
Biomacromolecules ; 20(8): 2953-2961, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31251598

RESUMO

Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 × 109 colony-forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bionanocomposite, respectively. The materials were structurally characterized by scanning electron microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analyzed using LIVE/DEAD staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P < 0.05). SEM showed that aerogel-OligoG bionanocomposite formulations had a more open three-dimensional structure, whereas LP showed that film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P < 0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P < 0.05). These novel CNF formulations or bionanocomposites were able to modify bacterial growth, biofilm development, and virulence factor production in vitro. These data support the potential of OligoG and CNF bionanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Celulose/química , Nanofibras/química , Oligossacarídeos/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Composição de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Peso Molecular , Oligossacarídeos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-29977590

RESUMO

Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol-1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height (P < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA (P < 0.05) with a corresponding increase in nanoparticle diffusion (P < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections.

13.
Artigo em Inglês | MEDLINE | ID: mdl-29463534

RESUMO

Pseudomonas aeruginosa plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in P. aeruginosa biofilms and disrupt pseudomonal biofilm assembly. As these bacterial phenotypes are regulated by quorum sensing (QS), we hypothesized that OligoG CF-5/20 may induce alterations in QS signaling in P. aeruginosa QS regulation was studied by using Chromobacterium violaceum CV026 biosensor assays that showed a significant reduction in acyl homoserine lactone (AHL) production following OligoG CF-5/20 treatment (≥2%; P < 0.05). This effect was confirmed by liquid chromatography-mass spectrometry analysis of C4-AHL and 3-oxo-C12-AHL production (≥2%; P < 0.05). Moreover, quantitative PCR showed that reduced expression of both the las and rhl systems was induced following 24 h of treatment with OligoG CF-5/20 (≥0.2%; P < 0.05). Circular dichroism spectroscopy indicated that these alterations were not due to steric interaction between the AHL and OligoG CF-5/20. Confocal laser scanning microscopy (CLSM) and COMSTAT image analysis demonstrated that OligoG CF-5/20-treated biofilms had a dose-dependent decrease in biomass that was associated with inhibition of extracellular DNA synthesis (≥0.5%; P < 0.05). These changes correlated with alterations in the extracellular production of the pseudomonal virulence factors pyocyanin, rhamnolipids, elastase, and total protease (P < 0.05). The ability of OligoG CF-5/20 to modify QS signaling in P. aeruginosa PAO1 may influence critical downstream functions such as virulence factor production and biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Pseudomonas aeruginosa/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-28630204

RESUMO

In chronic respiratory disease, the formation of dense, 3-dimensional "microcolonies" by Pseudomonas aeruginosa within the airway plays an important role in contributing to resistance to treatment. An in vitro biofilm model of pseudomonal microcolony formation using artificial-sputum (AS) medium was established to study the effects of low-molecular-weight alginate oligomers (OligoG CF-5/20) on pseudomonal growth, microcolony formation, and the efficacy of colistin. The studies employed clinical cystic fibrosis (CF) isolates (n = 3) and reference nonmucoid and mucoid multidrug-resistant (MDR) CF isolates (n = 7). Bacterial growth and biofilm development and disruption were studied using cell viability assays and image analysis with scanning electron and confocal laser scanning microscopy. Pseudomonal growth in AS medium was associated with increased ATP production (P < 0.05) and the formation (at 48 h) of discrete (>10-µm) microcolonies. In conventional growth medium, colistin retained an ability to inhibit growth of planktonic bacteria, although the MIC was increased (0.1 to 0.4 µg/ml) in AS medium compared to Mueller-Hinton (MH) medium. In contrast, in an established-biofilm model in AS medium, the efficacy of colistin was decreased. OligoG CF-5/20 (≥2%) treatment, however, induced dose-dependent biofilm disruption (P < 0.05) and led to colistin retaining its antimicrobial activity (P < 0.05). While circular dichroism indicated that OligoG CF-5/20 did not change the orientation of the alginate carboxyl groups, mass spectrometry demonstrated that the oligomers induced dose-dependent (>0.2%; P < 0.05) reductions in pseudomonal quorum-sensing signaling. These findings reinforce the potential clinical significance of microcolony formation in the CF lung and highlight a novel approach to treat MDR pseudomonal infections.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Oligossacarídeos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Escarro/microbiologia
15.
Sci Rep ; 7: 44731, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361894

RESUMO

Concerns about acquisition of antibiotic resistance have led to increasing demand for new antimicrobial therapies. OligoG CF-5/20 is an alginate oligosaccharide previously shown to have antimicrobial and antibiotic potentiating activity. We investigated the structural modification of the bacterial cell wall by OligoG CF-5/20 and its effect on membrane permeability. Binding of OligoG CF-5/20 to the bacterial cell surface was demonstrated in Gram-negative bacteria. Permeability assays revealed that OligoG CF-5/20 had virtually no membrane-perturbing effects. Lipopolysaccharide (LPS) surface charge and aggregation were unaltered in the presence of OligoG CF-5/20. Small angle neutron scattering and circular dichroism spectroscopy showed no substantial change to the structure of LPS in the presence of OligoG CF-5/20, however, isothermal titration calorimetry demonstrated a weak calcium-mediated interaction. Metabolomic analysis confirmed no change in cellular metabolic response to a range of osmolytes when treated with OligoG CF-5/20. This data shows that, although weak interactions occur between LPS and OligoG CF-5/20 in the presence of calcium, the antimicrobial effects of OligoG CF-5/20 are not related to the induction of structural alterations in the LPS or cell permeability. These results suggest a novel mechanism of action that may avoid the common route in acquisition of resistance via LPS structural modification.


Assuntos
Alginatos/farmacologia , Anti-Infecciosos/farmacologia , Membrana Celular/metabolismo , Pseudomonas aeruginosa/citologia , Streptococcus mutans/citologia , Alginatos/química , Cátions Bivalentes/farmacologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos
16.
Carbohydr Polym ; 157: 1955-1962, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987916

RESUMO

Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials. Growth curves using CNF (diameter <20nm) in suspension demonstrated an interesting dose-dependent inhibition of bacterial growth. In addition, analysis of biofilm formation (Pseudomonas aeruginosa PAO1) on nanocellulose aerogels (20g/m2) revealed significantly less biofilm biomass with decreasing aerogel porosity and surface roughness. Importantly, virulence factor production by P. aeruginosa in the presence of nanocellulose materials, quantified for the first time, was unaffected (p>0.05) over 24h. These data demonstrate the potential of nanocellulose materials in the development of novel dressings that may afford significant clinical potential.


Assuntos
Bandagens , Celulose/química , Nanopartículas , Madeira , Biofilmes , Pseudomonas aeruginosa/crescimento & desenvolvimento
17.
Mol Pharm ; 13(3): 863-72, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26833139

RESUMO

The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12-15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Human studies showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF.


Assuntos
Alginatos/química , Fibrose Cística/tratamento farmacológico , Mucinas/química , Muco/química , Oligossacarídeos/química , Polímeros/farmacologia , Adolescente , Adulto , Alginatos/metabolismo , Animais , Doença Crônica , Ensaios Clínicos Fase I como Assunto , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Mucinas/metabolismo , Muco/metabolismo , Oligossacarídeos/metabolismo , Polímeros/química , Ratos , Ratos Sprague-Dawley , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Escarro/química , Suínos , Adulto Jovem
18.
Carbohydr Polym ; 137: 191-197, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26686120

RESUMO

Nanocellulose from wood is a novel biomaterial, which is highly fibrillated at the nanoscale. This affords the material a number of advantages, including self-assembly, biodegradability and the ability to absorb and retain moisture, which highlights its potential usefulness in clinical wound-dressing applications. In these in vitro studies, the wound pathogen Pseudomonas aeruginosa PAO1 was used to assess the ability of two nanocellulose materials to impair bacterial growth (<48 h). The two nanocelluloses had a relatively small fraction of residual fibres (<4%) and thus a large fraction of nanofibrils (widths <20 nm). Scanning electron microscopy and confocal laser scanning microscopy imaging demonstrated impaired biofilm growth on the nanocellulose films and increased cell death when compared to a commercial control wound dressing, Aquacel(®). Nanocellulose suspensions inhibited bacterial growth, whilst UV-vis spectrophotometry and laser profilometry also revealed the ability of nanocellulose to form smooth, translucent films. Atomic force microscopy studies of the surface properties of nanocellulose demonstrated that PAO1 exhibited markedly contrasting morphology when grown on the nanocellulose film surfaces compared to an Aquacel(®) control dressing (p<0.05). This study highlights the potential utility of these biodegradable materials, from a renewable source, for wound dressing applications in the prevention and treatment of biofilm development.


Assuntos
Biofilmes/crescimento & desenvolvimento , Celulose/química , Nanoestruturas/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Microscopia de Força Atômica
19.
Biomed Res Int ; 2015: 925757, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090461

RESUMO

Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.


Assuntos
Bioimpressão , Celulose/uso terapêutico , Nanoestruturas/uso terapêutico , Cicatrização/efeitos dos fármacos , Bandagens , Celulose/química , Humanos , Teste de Materiais , Nanoestruturas/química , Ácido Periódico/química , Ácido Periódico/uso terapêutico , Impressão Tridimensional , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
20.
PLoS One ; 9(11): e112518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409186

RESUMO

The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity.


Assuntos
Alginatos/farmacologia , Antifúngicos/farmacologia , Aspergillus/citologia , Aspergillus/efeitos dos fármacos , Candida/citologia , Candida/efeitos dos fármacos , Oligossacarídeos/química , Alginatos/química , Proliferação de Células/efeitos dos fármacos , Dimerização , Sinergismo Farmacológico , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA