RESUMO
A detailed overview of the knowledge gaps in our understanding of the heliospheric interaction with the largely unexplored Very Local Interstellar Medium (VLISM) are provided along with predictions of with the scientific discoveries that await. The new measurements required to make progress in this expanding frontier of space physics are discussed and include in-situ plasma and pick-up ion measurements throughout the heliosheath, direct sampling of the VLISM properties such as elemental and isotopic composition, densities, flows, and temperatures of neutral gas, dust and plasma, and remote energetic neutral atom (ENA) and Lyman-alpha (LYA) imaging from vantage points that can uniquely discern the heliospheric shape and bring new information on the interaction with interstellar hydrogen. The implementation of a pragmatic Interstellar Probe mission with a nominal design life to reach 375 Astronomical Units (au) with likely operation out to 550 au are reported as a result of a 4-year NASA funded mission study.
RESUMO
Strong evidence demonstrates a significant association between cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). For this reason, interest in understanding the underlying vascular pathologies that contribute to AD remain. CAA research has primarily focused on arterioles and capillaries, overlooking the draining venules. Therefore, this study sought to examine venular amyloid pathology and its relationship to arteriolar amyloidosis throughout AD progression in the TgF344-AD rat model. Antibodies targeting the amyloid-beta peptide (Aß) sequence suggest morphological differences between arteriolar and venular amyloid. Mass spectrometric analyses of isolated cortical parenchymal plaques, arteriolar and venular amyloid demonstrated presence of Aß in all three samples, as well as proteins known to be associated with AD. Histopathological analysis indicates a significant age effect for both arteriolar and venular amyloid accumulation, with accumulation initiated in the somatosensory cortex followed by the motor and cingulate cortex. Lastly, significant arteriolar amyloid accumulates relative to venular amyloid deposition in AD progression. Overall, understanding venular and arteriolar amyloid pathology provides insight into the complex connection between CAA and AD.
Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/metabolismo , Amiloide , Animais , Angiopatia Amiloide Cerebral/patologia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Vênulas/metabolismoRESUMO
We present a review of Anomalous Cosmic Rays (ACRs), including the history of their discovery and recent insights into their acceleration and transport in the heliosphere. We focus on a few selected topics including a discussion of mechanisms of their acceleration, escape from the heliosphere, their effects on the dynamics of the heliosheath, transport in the inner heliosphere, and their solar cycle dependence. A discussion concerning their name is also presented towards the end of the review. We note that much is known about ACRs and perhaps the term Anomalous Cosmic Ray is not particularly descriptive to a non specialist. We suggest that the more-general term: "Heliospheric Energetic Particles", which is more descriptive, for which ACRs and other energetic particle species of heliospheric origin are subsets, might be more appropriate.
RESUMO
The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.
RESUMO
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.
RESUMO
NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.
RESUMO
Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto. The intensity is increasing exponentially with distance to Pluto and reaches nominal levels of the interplanetary medium at about 190R P distance. Inside the wake of Pluto, we observe oscillations of the ion intensities with a periodicity of about 0.2 hr. We show that these can be quantitatively explained by the electric field of an ultralow-frequency wave and discuss possible physical drivers for such a field. We find no evidence for the presence of plutogenic ions in the considered energy range.
RESUMO
Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft's Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn's dense atmosphere and is decoupled from the rest of the magnetosphere by the planet's A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.
RESUMO
Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.
RESUMO
The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.
RESUMO
INTRODUCTION: Outcome measures of breast reconstruction have used panel assessment of photographs. This provides limited information to the assessor as these images are static.. The aim of this study was to assess whether the use of digital video was a valid assessment tool and to compare its use against photography. METHODS: 35 patients post-reconstruction underwent photography, digital video capture and completed Breast Cancer Treatment Outcomes Scale (BCTOS) questionnaires. The photographs/video clips were randomised and shown to a 21 member panel. Opinions on aesthetic aspects of the reconstruction were assessed using the BCTOS and Harris scale. Panel inter-rater agreement and patient-panel correlation was assessed using Kendall's Coefficient of Concordance and Spearman's rank correlation tests respectively. RESULTS: There was a "moderate" degree of inter-rater agreement amongst panel members in all categories. Greater agreement occurred using video footage to assess overall cosmesis (0.548 vs 0.507) and shape (0.505 vs 0.486). Video showed a greater degree of correlation with patient self-assessment scores in comparison to photography (0.311 vs 0.281). CONCLUSION: Video footage coupled with panel assessment is a valid method of assessing post-operative outcomes of breast reconstruction and appears superior to still photographs in terms of inter-rater agreement and correlation with patient self-assessment.
Assuntos
Mamoplastia , Gravação em Vídeo , Sistemas Computacionais , Feminino , Humanos , Satisfação do Paciente , Fotografação , Reprodutibilidade dos Testes , Retalhos Cirúrgicos , Resultado do TratamentoRESUMO
We report measurements of energetic (>40 kiloelectron volts) charged particles on Voyager 1 from the interface region between the heliosheath, dominated by heated solar plasma, and the local interstellar medium, which is expected to contain cold nonsolar plasma and the galactic magnetic field. Particles of solar origin at Voyager 1, located at 18.5 billion kilometers (123 astronomical units) from the Sun, decreased by a factor of >10(3) on 25 August 2012, while those of galactic origin (cosmic rays) increased by 9.3% at the same time. Intensity changes appeared first for particles moving in the azimuthal direction and were followed by those moving in the radial and antiradial directions with respect to the solar radius vector. This unexpected heliospheric "depletion region" may form part of the interface between solar plasma and the galaxy.
RESUMO
Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.
RESUMO
When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.
Assuntos
Júpiter , Elétrons , Meio Ambiente Extraterreno , Íons , Oxigênio , Prótons , Astronave , Enxofre , TemperaturaRESUMO
The targeting of the ATP binding pocket of the epidermal growth factor receptor (EGFR) tyrosine kinase, by the small molecule drugs gefitinib and erlotinib, represents a promising new therapeutic strategy in non-small cell lung cancer. However, it is now apparent that only a subset of patients responds to such treatment. Two publications in early 2004 reported the presence of activating mutations in the EGFR tyrosine kinase gene conferring exquisite sensitivity to these drugs. Several publications have since reported prospective data consistent with this finding. This brief review summarises the mutation data from 15 such studies in terms of mutation frequency by clinicopathological features and correlation with response to tyrosine kinase inhibition. A new paradigm for the routine detection of such mutations is needed to facilitate patient selection for treatment and further studies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Genes erbB-1/genética , Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Cloridrato de Erlotinib , Feminino , Gefitinibe , Terapia Genética/métodos , Humanos , Masculino , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinazolinas/uso terapêuticoRESUMO
Voyager 1 (V1) began measuring precursor energetic ions and electrons from the heliospheric termination shock (TS) in July 2002. During the ensuing 2.5 years, average particle intensities rose as V1 penetrated deeper into the energetic particle foreshock of the TS. Throughout 2004, V1 observed even larger, fluctuating intensities of ions from 40 kiloelectron volts (keV) to >/=50 megaelectron volts per nucleon and of electrons from >26 keV to >/=350 keV. On day 350 of 2004 (2004/350), V1 observed an intensity spike of ions and electrons that was followed by a sustained factor of 10 increase at the lowest energies and lesser increases at higher energies, larger than any intensities since V1 was at 15 astronomical units in 1982. The estimated solar wind radial flow speed was positive (outward) at approximately +100 kilometers per second (km s(-1)) from 2004/352 until 2005/018, when the radial flows became predominantly negative (sunward) and fluctuated between approximately -50 and 0 km s(-1) until about 2005/110; they then became more positive, with recent values (2005/179) of approximately +50 km s(-1). The energetic proton spectrum averaged over the postshock period is apparently dominated by strongly heated interstellar pickup ions. We interpret these observations as evidence that V1 was crossed by the TS on 2004/351 (during a tracking gap) at 94.0 astronomical units, evidently as the shock was moving radially inward in response to decreasing solar wind ram pressure, and that V1 has remained in the heliosheath until at least mid-2005.
RESUMO
Protracted venous infusion 5-fluorouracil (5FU) combined with mitomycin C (MMC) has demonstrated significant activity against metastatic colorectal cancer. Owing to potential synergy based upon upregulation of thymidine phosphorylase by MMC, the combination of capecitabine and MMC may improve outcomes in irinotecan-refractory disease. Eligible patients with progressive disease during or within 6 months of second-line chemotherapy were treated with capecitabine (1250 mg m(-2) twice daily) days 1-14 every 3 weeks and MMC (7 mg m(-2) IV bolus) once every 6 weeks. A total of 36 patients were recruited, with a median age of 64 years (range 40-77), and 23 patients (78%) were performance status 0-1. The objective response rate was 15.2%. In all, 48.5% of patients had stable disease. Median failure-free survival was 5.4 months (95% CI 4.6-6.2). Median overall survival was 9.3 months (95% CI: 6.9-11.7). Grade 3 toxicities were palmar-plantar erythema 16.7%, vomiting 8.3%, diarrhoea 2.8%, anaemia 8.3%, and neutropenia 2.8%. No patients developed haemolytic uraemic syndrome. Symptomatic improvement occurred for pain, bowel symptoms, and dyspnoea. Capecitabine in combination with MMC is an effective regimen for metastatic colorectal cancer resistant to 5FU and irinotecan with an acceptable toxicity profile and a convenient administration schedule.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Camptotecina/uso terapêutico , Capecitabina , Neoplasias Colorretais/secundário , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Humanos , Irinotecano , Masculino , Pessoa de Meia-Idade , Mitomicina/administração & dosagem , Terapia de Salvação , Taxa de Sobrevida , Resultado do TratamentoRESUMO
The purpose of this study was to determine whether epirubicin, cisplatin and infused 5FU (ECF) improves overall survival (OS) compared to 5FU, etoposide and leucovorin (FELV) in patients with previously untreated advanced biliary cancer in a prospective randomised study. Patients were randomly assigned to receive epirubicin, cisplatin and infused 5FU ECF or bolus 5FU etoposide and leucovorin (FELV). The primary end point was OS with secondary end points of objective response rate (ORR), failure-free survival (FFS), quality of life (QOL) and toxicity. In all, 54 patients were recruited with 27 randomly assigned to each arm. The median OS for ECF was 9.02 months (95% confidence interval (CI): 6.46-11.51) and FELV 12.03 months (95% CI: 9.3-14.7), P=0.2059. Objective response rates were similar for both arms: ECF 19.2% (95% CI: 6.55-39.3); FELV 15% (95% CI: 3.2-37.9), P=0.72. There was significantly increased grade 3/4 neutropenia with FELV vs ECF (53.8 vs 29.5%, respectively, P=0.020). Symptom resolution was impressive for both regimens. This is the largest reported randomised study to date in this setting. ECF did not improve OS compared to FELV, but was associated with less acute toxicity. These data suggest that chemotherapy can prolong OS and achieve good symptomatic relief in advanced biliary cancer.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Sistema Biliar/tratamento farmacológico , Adulto , Idoso , Etoposídeo/administração & dosagem , Feminino , Fluoruracila/administração & dosagem , Humanos , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Fatores de TempoRESUMO
This study was designed to assess the safety and efficacy of capecitabine and mitomycin C (MMC) in previously untreated patients with advanced colorectal cancer (CRC). Patients received capecitabine 2500 mg m(2) day 1, orally divided in two doses of 1250 mg m(-2) in the morning and evening for 14 days every 21 days and MMC 7 mg m(-2) (maximum total dose 14 mg) as an intravenous bolus every 6 weeks for a total of four courses. The median age was 70 years (range 24-85) and the majority of patients (86.9%) were of performance status 1/2. The most common metastatic site was liver. In all, 84 patients were assessable for response. The overall response rate was 38% (95% CI: 27.7-49.3) and a further 33.3% of patients achieved stable disease over 12 weeks. There was good symptom resolution ranging from 64 to 86%. Grade 3/4 toxicity was as follows: hand-foot syndrome 19.7%; diarrhoea 10%; neutropenia 2.4%; infection 2.3%. Capecitabine and MMC have shown encouraging activity with a favourable toxicity profile, a convenient administration schedule, and could be considered for patients deemed unsuitable for oxaliplatin and irinotecan combinations.