Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biofilm ; 6: 100166, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078059

RESUMO

Objectives: Structural or mucus hypersecretory pulmonary diseases such as cystic fibrosis (CF), wherein viscous mucus accumulates and clearance functions are impaired, predispose people to lung infection by inhaled bacteria that form biofilm aggregates. Nontuberculous mycobacteria (NTM), primarily Mycobacterium abscessus and Mycobacterium avium, are the growing cause of these lung infections and are extremely challenging to treat due to antibiotic recalcitrance. Better therapeutic approaches are urgently needed. We developed a humanized monoclonal antibody (HuTipMab) directed against a biofilm structural linchpin, the bacterial DNABII proteins, that rapidly disrupts biofilms and generates highly vulnerable newly released bacteria (NRel). Methods: HuTipMab's ability to recognize HupB, NTM's DNABII homologue was determined by ELISA. Relative ability of HuTipMab to disrupt biofilms formed by lab-passaged and clinical isolates of NTM was assessed by CLSM. Relative sensitivity of NTM NRel to antibiotic killing compared to when grown planktonically was evaluated by plate count. Results: HuTipMab recognized HupB and significantly disrupted NTM biofilms in a time- and dose-dependent manner. Importantly, NTM NRel of lab-passaged and clinical isolates were now highly sensitive to killing by amikacin and azithromycin. Conclusions: If successful, this combinatorial treatment strategy would empower existing antibiotics to more effectively kill NTM newly released from a biofilm by HuTipMab and thereby both improve clinical outcomes and perhaps decrease length of antibiotic treatment for people that are NTM culture-positive.

2.
NPJ Biofilms Microbiomes ; 9(1): 52, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507436

RESUMO

Pseudomonas aeruginosa forms suspended multicellular aggregates when cultured in liquid media. These aggregates may be important in disease, and/or as a pathway to biofilm formation. The polysaccharide Psl and extracellular DNA (eDNA) have both been implicated in aggregation, but previous results depend strongly on the experimental conditions. Here we develop a quantitative microscopy-based method for assessing changes in the size distribution of suspended aggregates over time in growing cultures. For exponentially growing cultures of P. aeruginosa PAO1, we find that aggregation is mediated by cell-associated Psl, rather than by either eDNA or secreted Psl. These aggregates arise de novo within the culture via a growth process that involves both collisions and clonal growth, and Psl non-producing cells do not aggregate with producers. In contrast, we find that stationary phase (overnight) cultures contain a different type of multicellular aggregate, in which both eDNA and Psl mediate cohesion. Our findings suggest that the physical and biological properties of multicellular aggregates may be very different in early-stage vs late-stage bacterial cultures.


Assuntos
Biofilmes , Pseudomonas aeruginosa , Polissacarídeos Bacterianos/metabolismo , DNA
3.
J Bacteriol ; 204(5): e0007622, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35446119

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens causing chronic infections in the lungs of people with cystic fibrosis (CF) and in wounds, suggesting that these two organisms coexist in vivo. However, P. aeruginosa utilizes various mechanisms to antagonize S. aureus when these organisms are grown together in vitro. Here, we suggest a novel role for Psl in antagonizing S. aureus growth. Psl is an exopolysaccharide that exists in both cell-associated and cell-free forms and is important for biofilm formation in P. aeruginosa. When grown in planktonic coculture with a P. aeruginosa psl mutant, S. aureus had increased survival compared to when it was grown with wild-type P. aeruginosa. We found that cell-free Psl was critical for the killing, as purified cell-free Psl was sufficient to kill S. aureus. Transmission electron microscopy of S. aureus treated with Psl revealed disrupted cell envelopes, suggesting that Psl causes S. aureus cell lysis. This was independent of known mechanisms used by P. aeruginosa to antagonize S. aureus. Cell-free Psl could also promote S. aureus killing during growth in in vivo-like conditions. We also found that Psl production in P. aeruginosa CF clinical isolates positively correlated with the ability to kill S. aureus. This could be a result of P. aeruginosa coevolution with S. aureus in CF lungs. In conclusion, this study defines a novel role for P. aeruginosa Psl in killing S. aureus, potentially impacting the coexistence of these two opportunistic pathogens in vivo. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are two important opportunistic human pathogens commonly coisolated from clinical samples. However, P. aeruginosa can utilize various mechanisms to antagonize S. aureus in vitro. Here, we investigated the interactions between these two organisms and report a novel role for P. aeruginosa exopolysaccharide Psl in killing S. aureus. We found that cell-free Psl could kill S. aureus in vitro, possibly by inducing cell lysis. This was also observed in conditions reflective of in vivo scenarios. In accord with this, Psl production in P. aeruginosa clinical isolates positively correlated with their ability to kill S. aureus. Together, our data suggest a role for Psl in affecting the coexistence of P. aeruginosa and S. aureus in vivo.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Infecções Estafilocócicas , Biofilmes , Fibrose Cística/microbiologia , Humanos , Interações Microbianas , Polissacarídeos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
4.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32719153

RESUMO

Bacterial biofilms are linked with chronic infections and have properties distinct from those of planktonic, single-celled bacteria. The virulence mechanisms associated with Staphylococcus aureus biofilms are becoming better understood. Human neutrophils are critical for the innate immune response to S. aureus infection. Here, we describe two virulence strategies that converge to promote the ability of S. aureus biofilms to evade killing by neutrophils. Specifically, we show that while neutrophils exposed to S. aureus biofilms produce extracellular traps (NETs) and phagocytose bacteria, both mechanisms are inefficient in clearance of the biofilm biomass. This is attributed to the leukocidin LukAB, which promotes S. aureus survival during phagocytosis. We also show that the persistence of biofilm bacteria trapped in NETs is facilitated by S. aureus nuclease (Nuc)-mediated degradation of NET DNA. This study describes key aspects of the interaction between primary human neutrophils and S. aureus biofilms and provides insight into how S. aureus evades the neutrophil response to cause persistent infections.


Assuntos
Proteínas de Bactérias/imunologia , Biofilmes , Evasão da Resposta Imune , Leucocidinas/imunologia , Nuclease do Micrococo/imunologia , Neutrófilos/imunologia , Staphylococcus aureus/patogenicidade , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Humanos , Leucocidinas/genética , Viabilidade Microbiana , Nuclease do Micrococo/genética , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagocitose , Staphylococcus aureus/imunologia , Virulência
5.
Artigo em Inglês | MEDLINE | ID: mdl-30988141

RESUMO

Pseudomonas aeruginosa is an opportunistic, nosocomial bacterial pathogen that forms persistent infections due to the formation of protective communities, known as biofilms. Once the biofilm is formed, the bacteria embedded within it are recalcitrant to antimicrobial treatment and host immune defenses. Moreover, the presence of biofilms in wounds is correlated with chronic infection and delayed healing. The current standard of care for chronic wound infections typically involves physical disruption of the biofilm via debridement and subsequent antimicrobial treatment. The glycoside hydrolases PelAh and PslGh have been demonstrated in vitro to disrupt biofilm integrity through degradation of the key biofilm matrix exopolysaccharides Pel and Psl, respectively. Herein, we demonstrate that PslGh hydrolase therapy is a promising strategy for controlling P. aeruginosa wound infections. Hydrolase treatment of P. aeruginosa biofilms resulted in increased antibiotic efficacy and penetration into the biofilm. PslGh treatment of P. aeruginosa biofilms also improved innate immune activity leading to greater complement deposition, neutrophil phagocytosis, and neutrophil reactive oxygen species production. Furthermore, when P. aeruginosa-infected wounds were treated with a combination of PslGh and tobramycin, we observed an additive effect leading to greater bacterial clearance than treatments of tobramycin or PslGh alone. This study demonstrates that PelAh and PslGh have promising therapeutic potential and that PslGh may aid in the treatment of P. aeruginosa wound infections.


Assuntos
Antibacterianos/farmacologia , Glicosídeo Hidrolases/farmacologia , Imunidade Inata/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Biofilmes/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos , Tobramicina/farmacologia , Infecção dos Ferimentos/metabolismo
6.
J Bacteriol ; 201(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530517

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen found ubiquitously in the environment and commonly associated with airway infection in patients with cystic fibrosis. P. aeruginosa strain PAO1 is one of the most commonly used laboratory-adapted research strains and is a standard laboratory-adapted strain in multiple laboratories and strain banks worldwide. Due to potential isolate-to-isolate variability, we investigated the genomic and phenotypic diversity among 10 PAO1 strains (henceforth called sublines) obtained from multiple research laboratories and commercial sources. Genomic analysis predicted a total of 5,682 genes, with 5,434 (95.63%) being identical across all 10 strains. Phenotypic analyses revealed comparable growth phenotypes in rich media and biofilm formation profiles. Limited differences were observed in antibiotic susceptibility profiles and immunostimulatory potential, measured using heat-killed whole-cell preparations in four immortalized cell lines followed by quantification of interleukin-6 (IL-6) and IL-1ß secretion. However, variability was observed in the profiles of secreted molecular products, most notably, in rhamnolipid, pyoverdine, pyocyanin, Pseudomonas quinolone signal (PQS), extracellular DNA, exopolysaccharide, and outer membrane vesicle production. Many of the observed phenotypic differences did not correlate with subline-specific genetic changes, suggesting alterations in transcriptional and translational regulation. Taken together, these results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies.IMPORTANCE Laboratory-adapted strains of bacteria are used throughout the world for microbiology research. These prototype strains help keep research data consistent and comparable between laboratories. However, we have observed phenotypic variability when using different strains of Pseudomonas aeruginosa PAO1, one of the major laboratory-adopted research strains. Here, we describe the genomic and phenotypic differences among 10 PAO1 strains acquired from independent sources over 15 years to understand how individual maintenance affects strain characteristics. We observed limited genomic changes but variable phenotypic changes, which may have consequences for cross-comparison of data generated using different PAO1 strains. Our research highlights the importance of limiting practices that may promote the microevolution of model strains and calls for researchers to specify the strain origin to ensure reproducibility.


Assuntos
Fatores Biológicos/análise , Variação Genética , Genômica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Citocinas/metabolismo , Evolução Molecular , Genótipo , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa/imunologia , Seleção Genética
7.
Sci Rep ; 8(1): 9637, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925842

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

8.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305504

RESUMO

Secondary metabolites are an important source of pharmaceuticals and key modulators of microbe-microbe interactions. The bacterium Serratia marcescens is part of the Enterobacteriaceae family of eubacteria and produces a number of biologically active secondary metabolites. In this study, we screened for novel regulators of secondary metabolites synthesized by a clinical isolate of S. marcescens and found mutations in a gene for an uncharacterized UmoB/IgaA family member here named gumB Mutation of gumB conferred a severe loss of the secondary metabolites prodigiosin and serratamolide. The gumB mutation conferred pleiotropic phenotypes, including altered biofilm formation, highly increased capsular polysaccharide production, and loss of swimming and swarming motility. These phenotypes corresponded to transcriptional changes in fimA, wecA, and flhD Unlike other UmoB/IgaA family members, gumB was found to be not essential for growth in S. marcescens, yet igaA from Salmonella enterica, yrfF from Escherichia coli, and an uncharacterized predicted ortholog from Klebsiella pneumoniae complemented the gumB mutant secondary metabolite defects, suggesting highly conserved function. These data support the idea that UmoB/IgaA family proteins are functionally conserved and extend the known regulatory influence of UmoB/IgaA family proteins to the control of competition-associated secondary metabolites and biofilm formation.IMPORTANCE IgaA/UmoB family proteins are found in members of the Enterobacteriaceae family of bacteria, which are of environmental and public health importance. IgaA/UmoB family proteins are thought to be inner membrane proteins that report extracellular stresses to intracellular signaling pathways that respond to environmental challenge. This study introduces a new member of the IgaA/UmoB family and demonstrates a high degree of functional similarity between IgaA/UmoB family proteins. Moreover, this study extends the phenomena controlled by IgaA/UmoB family proteins to include the biosynthesis of antimicrobial secondary metabolites.


Assuntos
Proteínas de Bactérias/genética , Depsipeptídeos/metabolismo , Proteínas de Membrana/genética , Prodigiosina/metabolismo , Serratia marcescens/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Análise de Sequência de DNA , Serratia marcescens/metabolismo
9.
Sci Rep ; 7(1): 16065, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167572

RESUMO

Bacterial biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and recurrent infections. New antibody-based therapies may offer potential to target biofilm specific components for host-cell mediated bacterial clearance. For Pseudomonas aeruginosa, human monoclonal antibodies (mAbs) targeting the Psl biofilm exopolysaccharide exhibit protective activity against planktonic bacteria in acute infection models. However, anti-Psl mAb activity against P. aeruginosa biofilms is unknown. Here, we demonstrate that anti-Psl mAbs targeting three distinct Psl epitopes exhibit stratified binding in mature in vitro biofilms and bind Psl within the context of a chronic biofilm infection. These mAbs also exhibit differential abilities to inhibit early biofilm events and reduce biomass from mature biofilms in the presence of neutrophils. Importantly, a mAb mixture with neutrophils exhibited the greatest biomass reduction, which was further enhanced when combined with meropenem, a common anti-Pseudomonal carbapenem antibiotic. Moreover, neutrophil-mediated killing of biofilm bacteria correlated with the evident mAb epitope stratification within the biofilm. Overall, our results suggest that anti-Psl mAbs might be promising candidates for adjunctive use with antibiotics to inhibit/disrupt P. aeruginosa biofilms as a result of chronic infection.


Assuntos
Biofilmes , Neutrófilos/metabolismo , Pseudomonas aeruginosa/fisiologia , Adulto , Anticorpos Monoclonais/metabolismo , Biofilmes/efeitos dos fármacos , Biomassa , Agregação Celular/efeitos dos fármacos , Epitopos/metabolismo , Humanos , Meropeném/farmacologia , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação
10.
Sci Rep ; 7(1): 4761, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684799

RESUMO

Pseudomonas aeruginosa is a ubiquitous environmental organism and an opportunistic pathogen that causes chronic lung infections in the airways of cystic fibrosis (CF) patients as well as other immune-compromised individuals. During infection, P. aeruginosa enters the terminal bronchioles and alveoli and comes into contact with alveolar lining fluid (ALF), which contains homeostatic and antimicrobial hydrolytic activities, termed hydrolases. These hydrolases comprise an array of lipases, glycosidases, and proteases and thus, they have the potential to modify lipids, carbohydrates and proteins on the surface of invading microbes. Here we show that hydrolase levels between human ALF from healthy and CF patients differ. CF-ALF influences the P. aeruginosa cell wall by reducing the content of one of its major polysaccharides, Psl. This CF-ALF induced Psl reduction does not alter initial bacterial attachment to surfaces but reduces biofilm formation. Importantly, exposure of P. aeruginosa to CF-ALF drives the activation of neutrophils and triggers their oxidative response; thus, defining human CF-ALF as a new innate defense mechanism to control P. aeruginosa infection, but at the same time potentially adding to the chronic inflammatory state of the lung in CF patients.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Parede Celular/efeitos dos fármacos , Fibrose Cística/imunologia , Infecções Oportunistas/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adolescente , Adulto , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Líquido da Lavagem Broncoalveolar/química , Parede Celular/química , Criança , Fibrose Cística/microbiologia , Feminino , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/farmacologia , Humanos , Lipase/isolamento & purificação , Lipase/farmacologia , Masculino , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Infecções Oportunistas/microbiologia , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/farmacologia , Polissacarídeos Bacterianos/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia
11.
Sci Adv ; 2(5): e1501632, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386527

RESUMO

Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Catálise , Citotoxicidade Imunológica/efeitos dos fármacos , Microbiologia Ambiental , Ativação Enzimática , Glicosídeo Hidrolases/química , Humanos , Hidrólise , Neutrófilos/imunologia , Neutrófilos/microbiologia , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação
12.
Pathog Dis ; 74(1): ftv104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26536894

RESUMO

Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biopolímeros/análise , Matriz Extracelular/química , Microscopia Confocal/métodos , Permanganato de Potássio/metabolismo , Pseudomonas aeruginosa/fisiologia , Coloração e Rotulagem/métodos , Animais , Corantes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Coelhos , Staphylococcus/fisiologia , Streptococcus/fisiologia
13.
J Biol Chem ; 290(47): 28374-28387, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26424791

RESUMO

A key component of colonization, biofilm formation, and protection of the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharide Psl. Composed of a pentameric repeating unit of mannose, glucose, and rhamnose, the biosynthesis of Psl is proposed to occur via a Wzx/Wzy-dependent mechanism. Previous genetic studies have shown that the putative glycoside hydrolase PslG is essential for Psl biosynthesis. To understand the function of this protein, the apo-structure of the periplasmic domain of PslG (PslG(31-442)) and its complex with mannose were determined to 2.0 and 1.9 Å resolution, respectively. Despite a domain architecture and positioning of catalytic residues similar to those of other family 39 glycoside hydrolases, PslG(31-442) exhibits a unique 32-Å-long active site groove that is distinct from other structurally characterized family members. PslG formed a complex with two mannose monosaccharides in this groove, consistent with binding data obtained from intrinsic tryptophan fluorescence. PslG was able to catalyze the hydrolysis of surface-associated Psl, and this activity was abolished in a E165Q/E276Q double catalytic variant. Surprisingly, P. aeruginosa variants with these chromosomal mutations as well as a pslG deletion mutant were still capable of forming Psl biofilms. However, overexpression of PslG in a pslG deletion background impaired biofilm formation and resulted in less surface-associated Psl, suggesting that regulation of this enzyme is important during polysaccharide biosynthesis.


Assuntos
Biofilmes , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/biossíntese , Pseudomonas aeruginosa/enzimologia , Sequência de Carboidratos , Glicosídeo Hidrolases/química , Modelos Moleculares , Dados de Sequência Molecular , Relação Estrutura-Atividade , Frações Subcelulares/enzimologia
14.
Proc Natl Acad Sci U S A ; 109(50): 20632-6, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23175784

RESUMO

Bacteria have a tendency to attach to surfaces and grow as structured communities called biofilms. Chronic biofilm infections are a problem because they tend to resist antibiotic treatment and are difficult to eradicate. Bacterial biofilms have an extracellular matrix that is usually composed of a mixture of polysaccharides, proteins, and nucleic acids. This matrix has long been assumed to play a passive structural and protective role for resident biofilm cells. Here we show that this view is an oversimplification and that the biofilm matrix can play an active role in stimulating its own synthesis. Working with the model biofilm bacterium Pseudomonas aeruginosa, we found that Psl, a major biofilm matrix polysaccharide for this species, acts as a signal to stimulate two diguanylate cyclases, SiaD and SadC, to produce the intracellular secondary messenger molecule c-di-GMP. Elevated intracellular concentrations of c-di-GMP then lead to the increased production of Psl and other components of the biofilm. This mechanism represents a unique positive feedback regulatory circuit, where the expression of an extracellular polysaccharide promotes biofilm growth in a manner analogous to autocrine signaling in eukaryotes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/fisiologia , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Matriz Extracelular/fisiologia , Retroalimentação Fisiológica , Genes Bacterianos , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/genética , Sistemas do Segundo Mensageiro , Transdução de Sinais
15.
Methods Mol Biol ; 465: 1-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20560080

RESUMO

A myriad of methods has been reported for the isolation of genomic DNA from Mycobacterium spp.; some methods use mechanical disruption of the bacterial cells, whereas others use some form of chemical or enzymatic lysis. Regardless of the approach, the end points remain efficient breaking of the complex mycobacterial cell wall and release of high-quality DNA that is suitable for manipulation and analyses by molecular genetic techniques. This chapter providers detailed methods for the large and small isolation of mycobacterial genomic DNA.


Assuntos
DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Biologia Molecular/métodos , Mycobacterium/genética
16.
J Biol Chem ; 283(46): 31417-28, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18784076

RESUMO

Phenotypically distinct clinical isolates of Mycobacterium tuberculosis are capable of altering the balance that exists between the pathogen and human host and ultimately the outcome of infection. This study has identified two M. tuberculosis strains (i.e. HN885 and HN1554) among a bank of clinical isolates with a striking defect in phagocytosis by primary human macrophages when compared with strain Erdman, a commonly used laboratory strain for studies of pathogenesis. Mass spectrometry in conjunction with NMR studies unequivocally confirmed that both HN885 and HN1554 contain truncated and more branched forms of mannose-capped lipoarabinomannan (ManLAM) with a marked reduction of their linear arabinan (corresponding mainly to the inner Araf-alpha(1-->5)-Araf unit) and mannan (with fewer 6-Manp residues and more substitutions in the linear Manp-alpha(1-->6)-Manp unit) domains. The truncation in the ManLAM molecules produced by strains HN885 and HN1554 led to a significant reduction in their surface availability. In addition, there was a marked reduction of higher order phosphatidyl-myo-inositol mannosides and the presence of dimycocerosates, triglycerides, and phenolic glycolipid in their cell envelope. Less exposed ManLAM and reduced higher order phosphatidyl-myo-inositol mannosides in strains HN885 and HN1554 resulted in their low association with the macrophage mannose receptor. Despite reduced phagocytosis, ingested bacilli replicated at a fast rate following serum opsonization. Our results provide evidence that the clinical spectrum of tuberculosis may be dictated not only by the host but also by the amounts and ratios of surface exposed mycobacterial adherence factors defined by strain genotype.


Assuntos
Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/isolamento & purificação , Fagocitose , Células Cultivadas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lipopolissacarídeos/química , Espectroscopia de Ressonância Magnética , Metilação , Peso Molecular
17.
J Immunol ; 180(9): 5833-42, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18424702

RESUMO

CD4(+) T cell clones derived from a leprosy lesion and patient blood were used to monitor the isolation and identification of an Ag associated with the self-limited form of the disease. Biochemical purification and genetic analysis identified the T cell Ag as a conserved mycobacterial lipoglycoprotein LprG. LprG-mediated activation of CD4(+) T cells required specific MHC class II restriction molecules and intracellular processing. Although LprG activated TLR2, this alone was not sufficient to stimulate or inhibit T cell activation. A striking finding was that the carbohydrate moieties of LprG were required for optimal T cell activation, because recombinant LprG produced in Escherichia coli, or recombinant LprG produced in Mycobacterium smegmatis and digested by alpha-mannosidase, did not activate T cells. This study demonstrates that the universe of bacterial T cell Ags includes lipoglycoproteins, which act as TLR2 ligands but also require glycosylation for MHC class II-restricted T cell activation in vivo.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Lipoproteínas/imunologia , Mycobacterium/imunologia , Receptor 2 Toll-Like/imunologia , Antígenos de Bactérias/genética , Carboidratos/química , Carboidratos/genética , Carboidratos/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Humanos , Lipoproteínas/genética , Ativação Linfocitária/fisiologia , Mycobacterium/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , alfa-Manosidase/química
18.
J Immunol ; 177(5): 2959-68, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16920931

RESUMO

The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositóis/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Cátions Bivalentes/química , Cátions Bivalentes/farmacologia , Adesão Celular , Membrana Celular/metabolismo , Parede Celular/metabolismo , Células Cultivadas , Humanos , Integrina alfa5beta1/isolamento & purificação , Oligopeptídeos/metabolismo , Ligação Proteica
19.
Mol Microbiol ; 60(5): 1152-63, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16689792

RESUMO

Phosphorylated lipids play important roles in biological systems, not only as structural moieties but also as modulators of cellular function. Phospholipids of pathogenic bacteria are known to play roles both as membrane components and as factors that modulate the infectious process. Mycobacterium tuberculosis is, however, noteworthy in that it has an extremely diverse repertoire of biologically active phosphorylated lipids that, in the absence of a specialized protein translocation system, appear to constitute the main means of communication with the host. Many of these lipids are derived from phosphatidylinositol (PI) that is differentially processed to give rise to phosphatidylinositol mannosides (PIMs) or lipoarabinomannan. In preliminary studies on the lipid processing enzymes associated with the bacterial cell wall, a kinase activity was noted that gave rise to a novel lipid species released by the bacterium. It was determined that this kinase activity was encoded by the ORF Rv2252. Rv2252 demonstrates the capacity to phosphorylate various amphipathic lipids of host and bacterial origin, in particular a M. tuberculosis derived diacylglycerol. Targeted deletion of the rv2252 gene resulted in disruption of the production of certain higher order PIM species, suggesting a role for Rv2252 in the biosynthetic pathway of PI, a PIM precursor.


Assuntos
Diacilglicerol Quinase/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfatidilinositóis/biossíntese , Sequência de Aminoácidos , Ceramidas/metabolismo , Diacilglicerol Quinase/genética , Lipídeos/química , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Mycobacterium tuberculosis/genética , Fosfatidilinositóis/química , Alinhamento de Sequência
20.
J Bacteriol ; 187(8): 2747-57, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15805521

RESUMO

Structural analysis of compounds identified as lipid I and II from Mycobacterium smegmatis demonstrated that the lipid moiety is decaprenyl phosphate; thus, M. smegmatis is the first bacterium reported to utilize a prenyl phosphate other than undecaprenyl phosphate as the lipid carrier involved in peptidoglycan synthesis. In addition, mass spectrometry showed that the muropeptides from lipid I are predominantly N-acetylmuramyl-L-alanine-D-glutamate-meso-diaminopimelic acid-D-alanyl-D-alanine, whereas those isolated from lipid II form an unexpectedly complex mixture in which the muramyl residue and the pentapeptide are modified singly and in combination. The muramyl residue is present as N-acetylmuramic acid, N-glycolylmuramic acid, and muramic acid. The carboxylic functions of the peptide side-chains of lipid II showed three types of modification, with the dominant one being amidation. The preferred site for amidation is the free carboxyl group of the meso-diaminopimelic acid residue. Diamidated species were also observed. The carboxylic function of the terminal D-alanine of some molecules is methylated, as are all three carboxylic acid functions of other molecules. This study represents the first structural analysis of mycobacterial lipid I and II and the first report of extensive modifications of these molecules. The observation that lipid I was unmodified strongly suggests that the lipid II intermediates of M. smegmatis are substrates for a variety of enzymes that introduce modifications to the sugar and amino acid residues prior to the synthesis of peptidoglycan.


Assuntos
Parede Celular/química , Mycobacterium/química , Fosfatos de Poli-Isoprenil/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA