Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ASAIO J ; 45(5): 450-4, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10503624

RESUMO

This article describes a prototype continuous flow ventricular assist device (CFVAD3) supported in magnetic bearings. The VAD is a small centrifugal four bladed pump. The pump's geometry is explained. The CFVAD3 is the first compact VAD completely supported in magnetic bearings. The magnetic bearings are composed of an inlet side actuator divided into eight pole sets, and an outlet side actuator, also divided into eight pole sets. The pump operating performance was tested and found to be within the design flow rate of up to 9 L/min, and head up to 170 mm Hg for human circulatory support. Magnetic bearing operation out of center positions under various operating orientations were measured and found to be < 1/6 of the bearing clearance, well within specifications. The expected magnetic bearing power loss has been calculated at approximately 6.5 watts.


Assuntos
Coração Auxiliar , Magnetismo , Humanos
2.
Artif Organs ; 23(8): 792-6, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10463509

RESUMO

This article presents the performance test results of the CFVAD3 continuous flow blood pump in an artificial human circulation system. The CFVAD3 utilizes magnetic bearings that support a thin pancake impeller, the shape of which allows for a very compact pump whose total axial length is less than 5 cm with a radial length of about 10 cm. This gives a total volume of about 275 cc. The impeller itself has 4 vanes with a designed operating point of 6 L/min at 100 mm Hg of differential pressure and 2,000 rpm. The advantages of magnetic bearings, such as large clearance spaces and no mechanical wear, are elaborated upon. Furthermore, bearing model parameters such as load capacity and current gains are described. These parameters in conjunction with the operating conditions during testing are then used to estimate the fluid forces, stiffness, and damping properties while pumping. Knowledge of these parameters is desirable because of their effects on pump behavior. In addition, a better plant model will allow more robust control algorithms to be devised that can boost pump performance and reliability.


Assuntos
Coração Auxiliar , Desenho de Equipamento , Humanos , Magnetismo , Modelos Cardiovasculares , Modelos Estruturais , Reologia
3.
Artif Organs ; 23(8): 785-91, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10463508

RESUMO

A new continuous flow ventricular assist device using full magnetic suspension has been designed, constructed, and tested. The magnetic suspension centers the centrifugal pump impeller within the clearance passages in the pump, thus avoiding any form of contact. The noncontact operation is designed to give very high expected mechanical reliability, large clearances, low hemolysis, and a relatively small size compared to current pulsatile devices. A unique configuration of magnetic actuators on the inlet side and exit sides of the impeller provides full 5 axis control and suspension of the impeller. The bearing system is divided into segments which allow for 3 displacement axes and 2 angular control axes. The controller chosen for the first suspension tests consists of a decentralized set of 5 proportional integral derivative (PID) controllers. This document describes both the controller and an overview of some results pertaining to the magnetic bearing performance. The pump has been successfully operated in both water and blood under design conditions suitable for use as a ventricular assist device.


Assuntos
Coração Auxiliar , Desenho de Equipamento , Magnetismo
4.
ASAIO J ; 43(5): M598-603, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9360115

RESUMO

A new continuous flow ventricular assist device (CFVAD III) using a full magnetic suspension has been constructed. The magnetic suspension centers the centrifugal impeller within the clearance passages in the pump, thus avoiding any contact. This noncontact operation gives very high expected mechanical reliability, large clearances, low hemolysis, low thrombosis, and relatively small size compared with current pulsatile devices. A unique configuration of a system of magnetic actuators on the inlet side and exit sides of the impeller gives full five axis control and suspension of the impeller. The bearing system is divided into segments that allow for three displacement axes and two angular control axes. For the first suspension tests, a decentralized set of proportional, derivative, and integral (PID) controllers acting along the modal coordinates are used to suspend the impeller. The controller design takes into account the blood forces acting on the magnetically suspended impeller, the unbalance forces on the impeller and gravitational loads during various body motions. In the final design, the bearing control axes will be coupled together through fluidic forces so the electronic feedback controller is a centralized multiple input, multiple output controller. The control system design must be robust against these types of externally imposed loads to keep the impeller centered and avoid blood damage. This article discusses the dynamic model, controller, and controller implementation for the magnetic suspension controller of CFVAD III.


Assuntos
Coração Auxiliar , Magnetismo , Fenômenos Biomecânicos , Engenharia Biomédica , Simulação por Computador , Humanos , Modelos Teóricos , Desenho de Prótese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA