Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589895

RESUMO

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Animais , Protoporfirinas/farmacologia , Ácido Edético/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
2.
PLoS Comput Biol ; 20(1): e1011749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190400

RESUMO

An important mechanical property of cells is their membrane bending modulus, κ. Here, we introduce MEDUSA (MEmbrane DiffUse Scattering Analysis), a cloud-based analysis tool to determine the bending modulus, κ, from the analysis of X-ray diffuse scattering. MEDUSA uses GPU (graphics processing unit) accelerated hardware and a parallelized algorithm to run the calculations efficiently in a few seconds. MEDUSA's graphical user interface allows the user to upload 2-dimensional data collected from different sources, perform background subtraction and distortion corrections, select regions of interest, run the fitting procedure and output the fitted parameters, the membranes' bending modulus κ, and compressional modulus B.


Assuntos
Algoritmos , Computação em Nuvem , Raios X , Radiografia
3.
Adv Mater ; 36(8): e2304615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934471

RESUMO

The spleen is an important mediator of both adaptive and innate immunity. As such, attempts to modulate the immune response provided by the spleen may be conducive to improved outcomes for numerous diseases throughout the body. Here, biomimicry is used to rationally design nanomaterials capable of splenic retention and immunomodulation for the treatment of disease in a distant organ, the postinfarct heart. Engineered senescent erythrocyte-derived nanotheranostic (eSENTs) are generated, demonstrating significant uptake by the immune cells of the spleen including T and B cells, as well as monocytes and macrophages. When loaded with suberoylanilide hydroxamic acid (SAHA), the nanoagents exhibit a potent therapeutic effect, reducing infarct size by 14% at 72 h postmyocardial infarction when given as a single intravenous dose 2 h after injury. These results are supportive of the hypothesis that RBC-derived biomimicry may provide new approaches for the targeted modulation of the pathological processes involved in myocardial infarction, thus further experiments to decisively confirm the mechanisms of action are currently underway. This novel concept may have far-reaching applicability for the treatment of a number of both acute and chronic conditions where the immune responses are either stimulated or suppressed by the splenic (auto)immune milieu.


Assuntos
Biomimética , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Coração , Imunidade Inata , Imunomodulação
4.
Membranes (Basel) ; 12(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36557133

RESUMO

Nanoparticles are explored as drug carriers with the promise for the treatment of diseases to increase the efficacy and also reduce side effects sometimes seen with conventional drugs. To accomplish this goal, drugs are encapsulated in or conjugated to the nanocarriers and selectively delivered to their targets. Potential applications include immunization, the delivery of anti-cancer drugs to tumours, antibiotics to infections, targeting resistant bacteria, and delivery of therapeutic agents to the brain. Despite this great promise and potential, drug delivery systems have yet to be established, mainly due to their limitations in physical instability and rapid clearance by the host's immune response. Recent interest has been taken in using red blood cells (RBC) as drug carriers due to their naturally long circulation time, flexible structure, and direct access to many target sites. This includes coating of nanoparticles with the membrane of red blood cells, and the fabrication and manipulation of liposomes made of the red blood cells' cytoplasmic membrane. The properties of these erythrocyte liposomes, such as charge and elastic properties, can be tuned through the incorporation of synthetic lipids to optimize physical properties and the loading efficiency and retention of different drugs. Specificity can be established through the anchorage of antigens and antibodies in the liposomal membrane to achieve targeted delivery. Although still at an early stage, this erythrocyte-based platform shows first promising results in vitro and in animal studies. However, their full potential in terms of increased efficacy and side effect minimization still needs to be explored in vivo.

5.
Front Physiol ; 13: 953257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171967

RESUMO

Red blood cells (RBCs) are the most abundant cell type in the human body and critical suppliers of oxygen. The cells are characterized by a simple structure with no internal organelles. Their two-layered outer shell is composed of a cytoplasmic membrane (RBC cm ) tethered to a spectrin cytoskeleton allowing the cell to be both flexible yet resistant against shear stress. These mechanical properties are intrinsically linked to the molecular composition and organization of their shell. The cytoplasmic membrane is expected to dominate the elastic behavior on small, nanometer length scales, which are most relevant for cellular processes that take place between the fibrils of the cytoskeleton. Several pathologies have been linked to structural and compositional changes within the RBC cm and the cell's mechanical properties. We review current findings in terms of RBC lipidomics, lipid organization and elastic properties with a focus on biophysical techniques, such as X-ray and neutron scattering, and Molecular Dynamics simulations, and their biological relevance. In our current understanding, the RBC cm 's structure is patchy, with nanometer sized liquid ordered and disordered lipid, and peptide domains. At the same time, it is surprisingly soft, with bending rigidities κ of 2-4 kBT. This is in strong contrast to the current belief that a high concentration of cholesterol results in stiff membranes. This extreme softness is likely the result of an interaction between polyunsaturated lipids and cholesterol, which may also occur in other biological membranes. There is strong evidence in the literature that there is no length scale dependence of κ of whole RBCs.

6.
ACS Infect Dis ; 8(10): 2059-2072, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36173819

RESUMO

As a result of the growing worldwide antibiotic resistance crisis, many currently existing antibiotics have become ineffective due to bacteria developing resistive mechanisms. There are a limited number of potent antibiotics that are successful at suppressing microbial growth, such as polymyxin B (PmB); however, these are often deemed as a last resort due to their toxicity. We present a novel PmB delivery system constructed by conjugating hybrid erythrocyte liposomes with antibacterial antibodies to combine a high loading efficiency with guided delivery. The retention of PmB is enhanced by incorporating negatively charged lipids into the red blood cells' cytoplasmic membrane (RBCcm). Anti-Escherichia coli antibodies are attached to these hybrid erythrocyte liposomes by the inclusion of DSPE-PEG maleimide linkers. We show that these erythro-PmBs have a loading efficiency of ∼90% and are effective in delivering PmB to E. coli, with values for the minimum inhibitory concentration (MIC) being comparable to those of free PmB. The MIC values for Klebsiella aerogenes, however, significantly increased well beyond the resistant breakpoint, indicating that the inclusion of the anti-E. coli antibodies enables the erythro-PmBs to selectively deliver antibiotics to specific targets.


Assuntos
Lipossomos , Polimixina B , Antibacterianos/farmacologia , Eritrócitos , Eritromicina/farmacologia , Escherichia coli , Lipossomos/farmacologia , Maleimidas , Polimixina B/farmacologia
7.
PLoS One ; 17(8): e0269619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913930

RESUMO

An important mechanical property of cells is the membrane bending modulus, κ. In the case of red blood cells (RBCs) there is a composite membrane consisting of a cytoplasmic membrane and an underlying spectrin network. Literature values of κ are puzzling, as they are reported over a wide range, from 5 kBT to 230 kBT. To disentangle the contribution of the cytoplasmic membrane from the spectrin network, we investigated the bending of red blood cell cytoplasmic membranes (RBCcm) in the absence of spectrin and adenosine triphosphate (ATP). We used a combination of X-ray diffuse scattering (XDS), neutron spin-echo (NSE) spectrometry and Molecular Dynamics (MD) simulations. Our results indicate values of κ of order 4 kBT to 6 kBT, relatively small compared to literature values for most single component lipid bilayers. We suggest two ways this relative softness might confer biological advantage.


Assuntos
Bicamadas Lipídicas , Espectrina , Membrana Celular/química , Membrana Eritrocítica , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
8.
PLoS One ; 17(3): e0263671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275926

RESUMO

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/µm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Membrana Eritrocítica , Simulação de Dinâmica Molecular , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Membrana Eritrocítica/química , Membrana Eritrocítica/imunologia , Feminino , Lipossomos , Camundongos , Projetos Piloto , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/farmacologia , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/farmacologia
9.
Life (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676060

RESUMO

We used all-atom Molecular Dynamics (MD) computer simulations to study the formation of pre-polymers between the four nucleotides in RNA (AMP, UMP, CMP, GMP) in the presence of different substrates that could have been present in a prebiotic environment. Pre-polymers are C3'-C5' hydrogen-bonded nucleotides that have been suggested to be the precursors of phosphodiester-bonded RNA polymers. We simulated wet-dry cycles by successively removing water molecules from the simulations, from ~60 to 3 water molecules per nucleotide. The nine substrates in this study include three clay minerals, one mica, one phosphate mineral, one silica, and two metal oxides. The substrates differ in their surface charge and ability to form hydrogen bonds with the nucleotides. From the MD simulations, we quantify the interactions between different nucleotides, and between nucleotides and substrates. For comparison, we included graphite as an inert substrate, which is not charged and cannot form hydrogen bonds. We also simulated the dehydration of a nucleotide-only system, which mimics the drying of small droplets. The number of hydrogen bonds between nucleotides and nucleotides and substrates was found to increase significantly when water molecules were removed from the systems. The largest number of C3'-C5' hydrogen bonds between nucleotides occurred in the graphite and nucleotide-only systems. While the surface of the substrates led to an organization and periodic arrangement of the nucleotides, none of the substrates was found to be a catalyst for pre-polymer formation, neither at full hydration, nor when dehydrated. While confinement and dehydration seem to be the main drivers for hydrogen bond formation, substrate interactions reduced the interactions between nucleotides in all cases. Our findings suggest that small supersaturated water droplets that could have been produced by geysers or springs on the primitive Earth may play an important role in non-enzymatic RNA polymerization.

10.
PLoS One ; 16(11): e0259267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767588

RESUMO

Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.


Assuntos
Eritrócitos , Preservação de Sangue , Membrana Celular , Simulação de Dinâmica Molecular
11.
ACS Chem Neurosci ; 12(8): 1395-1405, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826295

RESUMO

Amyloid-ß (Aß) peptides spontaneously aggregate into ß- and cross-ß-sheets in model brain membranes. These nanometer sized can fuse into larger micrometer sized clusters and become extracellular and serve as nuclei for further plaque and fibril growth. Curcumin and homotaurine represent two different types of Aß aggregation inhibitors. While homotaurine is a peptic antiaggregant that binds to amyloid peptides, curcumin is a nonpeptic molecule that can inhibit aggregation by changing membrane properties. By using optical and fluorescent microscopy, X-ray diffraction, and UV-vis spectroscopy, we study the effect of curcumin and homotaurine on Aß25-35 aggregates in synthetic brain membranes. Both molecules partition spontaneously and uniformly in membranes and do not lead to observable membrane defects or disruption in our experiments. Both curcumin and homotaurine were found to significantly reduce the number of small, nanoscopic Aß aggregates and the corresponding ß- and cross-ß-sheet signals. While a number of research projects focus on potential drug candidates that target Aß peptides directly, membrane-lipid therapy explores membrane-mediated pathways to suppress peptide aggregation. Based on the results obtained, we conclude that membrane active drugs can be as efficient as peptide targeting drugs in inhibiting amyloid aggregation in vitro.


Assuntos
Doença de Alzheimer , Curcumina , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Curcumina/farmacologia , Humanos , Fragmentos de Peptídeos , Taurina/análogos & derivados
12.
Soft Matter ; 16(42): 9674-9682, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32869047

RESUMO

The potency of anesthesia was directly linked to the partitioning of the drug molecules in cell membranes by Meyer and Overton. Many molecules interact with lipid bilayers and lead to structural and functional changes. It remains an open question which change in membrane properties is responsible for a potential anesthetic effect or if anesthetics act by binding to direct targets. We studied the effect of ethanol, diethyl ether and isoflurane on the water distribution in lipid bilayers by combining all-atom molecular dynamics simulations and neutron diffraction experiments. The simulations show strong membrane-drug interactions with partitioning coefficients of 38%, 92% and 100% for ethanol, diethyl ether and isoflurane, respectively, and provide evidence for an increased water partitioning in the membrane core. The amount of intramembrane water molecules was experimentally determined by selectively deuterium labeling lipids, anesthetic drug and water molecules in neutron diffraction experiments. Four additional water molecules per lipid were observed in the presence of ethanol. Diethyl ether and isoflurane were found to significantly increase the amount of intramembrane water by 25% (8 water molecules). This increase in intramembrane water may contribute to the non-specific interactions between anesthetics and lipid membranes.


Assuntos
Anestésicos , Água , Bicamadas Lipídicas , Membranas , Simulação de Dinâmica Molecular
13.
Mol Nutr Food Res ; 64(22): e2000632, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981185

RESUMO

SCOPE: Alzheimer's disease is a neurodegenerative condition marked by the formation and aggregation of amyloid-ß (Aß) peptides. There exists, to this day, no cure or effective prevention for the disease; however, there is evidence that a healthy diet and certain food products can slow down first occurrence and progression. To investigate if food ingredients can interact with peptide aggregates, synthetic membranes that contained aggregates consisting of cross-ß sheets of the membrane active fragment A ß25--35 are prepared. METHODS AND RESULTS: The impact of resveratrol, found in grapes, caffeine, the main active ingredient in coffee, ß-carotene, found in orange fruits and vegetables, and epigallocatechin gallate (EGCG), a component of green tea, on the size and volume fraction of Aß aggregates is studied using optical and fluorescence microscopy, X-ray diffraction, UV-vis spectroscopy, and molecular dynamics simulations. All compounds are membrane active and spontaneously partitioned in the synthetic brain membranes. While resveratrol and caffeine lead to membrane thickening and reduced membrane fluidity, ß-carotene and EGCG preserve or increase fluidity. CONCLUSION: Resveratrol and caffeine do not reduce the volume fraction of peptide aggregates while ß-carotene significantly reduces plaque size. Interestingly, EGCG dissolves peptide aggregates and significantly decreases the corresponding cross-ß and ß-sheet signals.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cafeína/farmacologia , Catequina/análogos & derivados , Fragmentos de Peptídeos/metabolismo , Resveratrol/farmacologia , beta Caroteno/farmacologia , Encéfalo/citologia , Cafeína/química , Catequina/química , Catequina/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Resveratrol/química , Espectrofotometria Ultravioleta , Difração de Raios X , beta Caroteno/química
14.
Langmuir ; 36(40): 11899-11907, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32903014

RESUMO

The safe storage of blood is of fundamental importance to health care systems all over the world. Currently, plastic bags are used for the collection and storage of donated blood and are typically made of poly(vinyl chloride) (PVC) plasticized with di-2-ethylhexyl phthalate (DEHP). DEHP is known to migrate into packed red blood cells (RBC) and has been found to extend their shelf life. It has been speculated that DEHP incorporates itself into the RBC membrane and alters membrane properties, thereby reducing susceptibility to hemolysis and morphological deterioration. Here, we used high-resolution X-ray diffraction and molecular dynamics (MD) simulations to study the interaction between DEHP and model POPC lipid membranes at high (9 mol %) and low (1 mol %) concentrations of DEHP. At both concentrations, DEHP was found to spontaneously partition into the bilayer. At high concentrations, DEHP molecules were found to aggregate in the aqueous phase before inserting as clusters into the membrane. The presence of DEHP in the bilayers resulted in subtle, yet statistically significant, alterations in several membrane properties in both the X-ray diffraction experiments and MD simulations. DEHP led to (1) an increase of membrane width and (2) an increase in the area per lipid. It was also found to (3) increase the deuterium order parameter, however, (4) decrease membrane orientation, indicating the formation of thicker, stiffer membranes with increased local curvature. The observed effects of DEHP on lipid bilayers may help to better understand its effect on RBC membranes in increasing the longevity of stored blood by improving membrane stability.


Assuntos
Dietilexilftalato , Plastificantes , Preservação de Sangue , Dietilexilftalato/toxicidade , Eritrócitos , Lipídeos , Ácidos Ftálicos , Plastificantes/toxicidade , Cloreto de Polivinila
15.
Adv Biosyst ; 4(3): e1900185, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32293142

RESUMO

The modification of erythrocyte membrane properties provides a new tool towards improved drug delivery and biomedical applications. The fabrication of hybrid erythrocyte liposomes is presented by doping red blood cell membranes with synthetic lipid molecules of different classes (PC, PS, PG) and different degrees of saturation (14:0, 16:0-18:1). The respective solubility limits are determined, and material properties of the hybrid liposomes are studied by a combination of X-ray diffraction, epi-fluorescent microscopy, dynamic light scattering (DLS), Zeta potential, UV-vis spectroscopy, and Molecular Dynamics (MD) simulations. Membrane thickness and lipid orientation can be tuned through the addition of phosphatidylcholine lipids. The hybrid membranes can be fluorescently labelled by incorporating Texas-red DHPE, and their charge modified by incorporating phosphatidylserine and phosphatidylglycerol. By using fluorescein labeled dextran as an example, it is demonstrated that small molecules can be encapsulated into these hybrid liposomes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Membrana Eritrocítica , Lipossomos , Dextranos/química , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrócitos/citologia , Fluoresceínas/química , Humanos , Lipossomos/química , Lipossomos/metabolismo , Nanoestruturas/química , Biologia Sintética
16.
Carbohydr Polym ; 236: 115998, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172832

RESUMO

Starch is an attractive biomaterial given its low cost and high protein repellency, but its use in forming functional hydrogels is limited by its high viscosity and crystallinity. Herein, we demonstrate the use of fully amorphous starch nanoparticles (SNPs) as functional hydrogel building blocks that overcome these challenges. Methacrylation of SNPs enables hydrogel formation via photopolymerization, with the low viscosity of SNPs enabling facile preparation of pre-gel suspensions of up to 35 wt% SNPs relative to <10 wt% with linear starch. Small angle neutron scattering indicates a significantly different microstructure in SNP-based hydrogels compared to linear starch-based hydrogels due to the balance between inter- and intra-particle crosslinks, consistent with SNPs forming denser and stiffer hydrogels. Functionalized SNPs are highly cytocompatible at degree of substitution values <0.25 and, once gelled, can effectively repel cell adhesion. The physicochemical versatility and biological functionality of SNP-based hydrogels offer potential in various applications.

17.
J Phys Chem B ; 123(9): 2050-2056, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30605612

RESUMO

Lateral organization of lipids in the cell membrane appears to be an ancient feature of the cell, given the existence of lipid rafts in both eukaryotic and prokaryotic cells. Currently seen as platforms for protein partitioning, we posit that lipid rafts are capable of playing another role: stabilizing membrane physical properties over varying temperatures and other environmental conditions. Membrane composition defines the mechanical and viscous properties of the bilayer. The composition also varies strongly with temperature, with systematic changes in the partitioning of high and low melting temperature membrane components. In this way, rafts function as buffers of membrane physical properties, progressively counteracting environmental changes via compositional changes; i.e., more high melting lipids partition to the fluid phase with increasing temperature, increasing the bending modulus and viscosity, as thermal effects decrease these same properties. To provide an example of this phenomenon, we have performed neutron scattering experiments and atomistic molecular dynamics simulations on a phase separated model membrane. The results demonstrate a buffering effect in both the lateral diffusion coefficient and the bending modulus of the fluid phase upon changing temperature. This demonstration highlights the potentially advantageous stabilizing effect of complex lipid compositions in response to temperature and potentially other membrane destabilizing environmental conditions.


Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Difusão , Dimiristoilfosfatidilcolina/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Temperatura
18.
Sci Rep ; 8(1): 12367, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120270

RESUMO

The formation of amyloid-ß plaques is one of the hallmarks of Alzheimer's disease. The presence of an amphiphatic cell membrane can accelerate the formation of amyloid-ß aggregates, making it a potential druggable target to delay the progression of Alzheimer's disease. We have prepared unsaturated anionic membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and added the trans-membrane segment Aß25-35. Peptide plaques spontaneously form in these membranes at high peptide concentrations of 20 mol%, which show the characteristic cross-ß motif (concentrations are relative to the number of membrane lipids and indicate the peptide-to-lipid ratio). We used atomic force microscopy, fluorescence microscopy, x-ray microscopy, x-ray diffraction, UV-vis spectroscopy and Molecular Dynamics (MD) simulations to study three membrane-active molecules which have been speculated to have an effect in Alzheimer's disease: melatonin, acetylsalicyclic acid (ASA) and curcumin at concentrations of 5 mol% (drug-to-peptide ratio). Melatonin did not change the structural parameters of the membranes and did not impact the size or extent of peptide clusters. While ASA led to a membrane thickening and stiffening, curcumin made membranes softer and thinner. As a result, ASA was found to lead to the formation of larger peptide aggregates, whereas curcumin reduced the volume fraction of cross-ß sheets by ~70%. We speculate that the interface between membrane and peptide cluster becomes less favorable in thick and stiff membranes, which favors the formation of larger aggregates, while the corresponding energy mismatch is reduced in soft and thin membranes. Our results present evidence that cross-ß sheets of Aß25-35 in anionic unsaturated lipid membranes can be re-dissolved by changing membrane properties to reduce domain mismatch.


Assuntos
Peptídeos beta-Amiloides/química , Ânions/química , Tomografia com Microscopia Eletrônica , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microscopia de Força Atômica , Modelos Teóricos , Simulação de Dinâmica Molecular , Difração de Raios X
19.
R Soc Open Sci ; 5(2): 171710, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29515878

RESUMO

Local structure and dynamics of lipid membranes play an important role in membrane function. The diffusion of small molecules, the curvature of lipids around a protein and the existence of cholesterol-rich lipid domains (rafts) are examples for the membrane to serve as a functional interface. The collective fluctuations of lipid tails, in particular, are relevant for diffusion of membrane constituents and small molecules in and across membranes, and for structure and formation of membrane domains. We studied the effect of aspirin (acetylsalicylic acid, ASA) on local structure and dynamics of membranes composed of dimyristoylphosphocholine (DMPC) and cholesterol. Aspirin is a common analgesic, but is also used in the treatment of cholesterol. Using coherent inelastic neutron scattering experiments and molecular dynamics (MD) simulations, we present evidence that ASA binds to liquid-ordered, raft-like domains and disturbs domain organization and dampens collective fluctuations. By hydrogen-bonding to lipid molecules, ASA forms 'superfluid' complexes with lipid molecules that can organize laterally in superlattices and suppress cholesterol's ordering effect.

20.
Nanoscale ; 9(23): 7781-7790, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28397935

RESUMO

Precise knowledge of the mechanical properties of emerging nanomaterials and nanocomposites is crucial to match their performance with suitable applications. While methods to characterize mechanical properties exist, they are limited by instrument sensitivity and sample requirements. For bio-based nanomaterials this challenge is exacerbated by the extreme dependence of mechanical properties on humidity. This work presents an alternative approach, based on polymer shrinking-induced wrinkling mechanics, to determine the elastic modulus of nanobiocomposite films in a humidity-independent manner. Layer-by-layer (LbL) films containing cellulose nanocrystals (CNCs) and water-soluble polymers were deposited onto pre-stressed polystyrene substrates followed by thermal shrinking, which wrinkled the films to give them characteristic topographies. Three deposition parameters were varied during LbL assembly: (1) polymer type (xyloglucan - XG, or polyethyleneimine - PEI); (2) polymer concentration (0.1 or 1 wt%); and (3) number of deposition cycles, resulting in 10-600 nm thick nanobiocomposite films with tuneable compositions. Fast Fourier transform analysis on electron microscopy images of the wrinkled films was used to calculate humidity-independent moduli of 70 ± 2 GPa for CNC-XG0.1, 72 ± 2 GPa for CNC-PEI0.1, and 32.2 ± 0.8 GPa for CNC-PEI1.0 films. This structuring method is straightforward and amenable to a wide range of supported thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA