Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811362

RESUMO

The objective of the present study was to investigate the optimal dietary protein requirement and the effect of varying protein levels on the growth and health of juvenile, wild-caught Atlantic wolffish, Anarhichas lupus, a promising candidate for cold-water aquaculture diversification. Six iso-energetic (ca. 18.3 MJ kg-1), fish meal-based experimental diets were formulated with crude protein levels ranging from 35% to 60%, with graded increments of 5% in a 12-week feeding trial in a recirculating aquaculture system (RAS). Weight gain, specific growth rate (SGR), and condition factor (K) were evaluated in response to dietary protein levels. Liver, muscle, and blood parameters were assessed for possible changes in protein and lipid metabolism and welfare. Overall growth was highly variable throughout the experiment on all diets, as expected for a wild population. The feed with highest in protein (60%) inclusion resulted in the highest growth rates, with an average weight gain of 37.4% ± 33.8% and an SGR of 0.31% ± 0.2% day-1. This was closely followed by feeds with 55% and 50% protein inclusion with an average weight gain of 22.9% ± 34.8% and 28.5% ± 38.3%, respectively, and an SGR of 0.18% ± 0.3% day-1 and 0.22% ± 0.3% day-1, respectively. Fish fed the high protein diets generally had increased hepatic lipid deposition (17%-18%) and reduced free fatty acid levels (3.1-6.8 µmol L-1) in the plasma relative to fish that were fed the lower protein diets (35%-45%). No effects of diet were found on plasma protein levels or muscle protein content. Furthermore, stress parameters such as plasma cortisol and glucose levels were unaffected by diet, as were plasma ghrelin levels. Overall, these results suggest that a high protein inclusion in the diet for Atlantic wolffish is required to sustain growth with a minimum protein level of 50%.

2.
Evol Appl ; 16(2): 321-337, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793700

RESUMO

Species invasions are a global problem of increasing concern, especially in highly connected aquatic environments. Despite this, salinity conditions can pose physiological barriers to their spread, and understanding them is important for management. In Scandinavia's largest cargo port, the invasive round goby (Neogobius melanostomus) is established across a steep salinity gradient. We used 12,937 SNPs to identify the genetic origin and diversity of three sites along the salinity gradient and round goby from western, central and northern Baltic Sea, as well as north European rivers. Fish from two sites from the extreme ends of the gradient were also acclimated to freshwater and seawater, and tested for respiratory and osmoregulatory physiology. Fish from the high-salinity environment in the outer port showed higher genetic diversity, and closer relatedness to the other regions, compared to fish from lower salinity upstream the river. Fish from the high-salinity site also had higher maximum metabolic rate, fewer blood cells and lower blood Ca2+. Despite these genotypic and phenotypic differences, salinity acclimation affected fish from both sites in the same way: seawater increased the blood osmolality and Na+ levels, and freshwater increased the levels of the stress hormone cortisol. Our results show genotypic and phenotypic differences over short spatial scales across this steep salinity gradient. These patterns of the physiologically robust round goby are likely driven by multiple introductions into the high-salinity site, and a process of sorting, likely based on behaviour or selection, along the gradient. This euryhaline fish risks spreading from this area, and seascape genomics and phenotypic characterization can inform management strategies even within an area as small as a coastal harbour inlet.

3.
Sci Rep ; 7: 45778, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361996

RESUMO

Anadromy is a distinctive life-history strategy in fishes that has evolved independently many times. In an evolutionary context, the benefits of anadromy for a species or population must outweigh the costs and risks associated with the habitat switch. The migration of fish across the freshwater-ocean boundary coincides with potentially energetically costly osmoregulatory modifications occurring at numerous levels of biological organization. By integrating whole animal and sub-cellular metabolic measurements, this study presents significant findings demonstrating how an anadromous salmonid (i.e. rainbow trout, Oncorhynchus mykiss) is able to transform from a hyper- to hypo-osmoregulatory state without incurring significant increases in whole animal oxygen consumption rate. Instead, underlying metabolic mechanisms that fuel the osmoregulatory machinery at the organ level (i.e. intestine) are modulated, as mitochondrial coupling and anaerobic metabolism are increased to satisfy the elevated energetic demands. This may have positive implications for the relative fitness of the migrating individual, as aerobic capacity may be maintained for locomotion (i.e. foraging and predator avoidance) and growth. Furthermore, the ability to modulate mitochondrial metabolism in order to maintain osmotic balance suggests that mitochondria of anadromous fish may have been a key target for natural selection, driving species adaptations to different aquatic environments.


Assuntos
Mitocôndrias/metabolismo , Oncorhynchus mykiss/metabolismo , Osmorregulação , Aclimatação , Anaerobiose , Migração Animal , Animais , Feminino , Mucosa Intestinal/metabolismo , Masculino , Consumo de Oxigênio , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA