RESUMO
BMP-9 and BMP-10 are TGF-ß family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-ß family, BMP-9 and -10 are secreted as a mixture of monomers and disulfide-linked dimers. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a noncovalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for the reduced propensity to dimerize, not the cysteinylation. Additionally, we show that the dimerization propensity of BMP-9 is lower than BMP-10 and these propensities can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing monomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
RESUMO
Betaglycan (BG) is a transmembrane co-receptor of the transforming growth factor-ß (TGF-ß) family of signaling ligands. It is essential for embryonic development and tissue homeostasis and fertility in adults. It functions by enabling binding of the three TGF-ß isoforms to their signaling receptors and is additionally required for inhibin A (InhA) activity. Despite its requirement for the functions of TGF-ßs and InhA in vivo, structural information explaining BG ligand selectivity and its mechanism of action is lacking. Here, we determine the structure of TGF-ß bound both to BG and the signaling receptors, TGFBR1 and TGFBR2. We identify key regions responsible for ligand engagement, which has revealed novel binding interfaces that differ from those described for the closely related co-receptor of the TGF-ß family, endoglin, thus demonstrating remarkable evolutionary adaptation to enable ligand selectivity. Finally, we provide a structural explanation for the hand-off mechanism underlying TGF-ß signal potentiation.
RESUMO
While there has been progress in the de novo design of small globular miniproteins (50-65 residues) to bind to primarily concave regions of a target protein surface, computational design of minibinders to convex binding sites remains an outstanding challenge due to low level of overall shape complementarity. Here, we describe a general approach to generate computationally designed proteins which bind to convex target sites that employ geometrically matching concave scaffolds. We used this approach to design proteins binding to TGFßRII, CTLA-4 and PD-L1 which following experimental optimization have low nanomolar to picomolar affinities and potent biological activity. Co-crystal structures of the TGFßRII and CTLA-4 binders in complex with the receptors are in close agreement with the design models. Our approach provides a general route to generating very high affinity binders to convex protein target sites.
RESUMO
Persistent HGF/Met signaling drives tumor growth and dissemination. Proteoglycans within the tumor microenvironment might control HGF availability and signaling by affecting its accessibility to Met (HGF receptor), likely defining whether acute or sustained HGF/Met signaling cues take place. Given that betaglycan (BG, also known as type III TGFß receptor or TGFBR3), a multi-faceted proteoglycan TGFß co-receptor, can be found within the tumor microenvironment, we addressed its hypothetical role in oncogenic HGF signaling. We found that HGF/Met promotes lung cancer and endothelial cells migration via PI3K and mTOR. This effect was enhanced by recombinant soluble betaglycan (solBG) via a mechanism attributable to its glycosaminoglycan chains, as a mutant without them did not modulate HGF effects. Moreover, soluble betaglycan extended the effect of HGF-induced phosphorylation of Met, Akt, and Erk, and membrane recruitment of the RhoGEF P-Rex1. Data-mining analysis of lung cancer patient datasets revealed a significant correlation between high MET receptor, HGF, and PREX1 expression and reduced patient survival. Soluble betaglycan showed biochemical interaction with HGF and, together, they increased tumor growth in immunocompetent mice. In conclusion, the oncogenic properties of the HGF/Met pathway are enhanced and sustained by GAG-containing soluble betaglycan.
RESUMO
Endothelial cells (ECs) respond to concurrent stimulation by biochemical factors and wall shear stress (SS) exerted by blood flow. Disruptions in flow-induced responses can result in remodeling issues and cardiovascular diseases, but the detailed mechanisms linking flow-mechanical cues and biochemical signaling remain unclear. Activin receptor-like kinase 1 (ALK1) integrates SS and ALK1-ligand cues in ECs; ALK1 mutations cause hereditary hemorrhagic telangiectasia (HHT), marked by arteriovenous malformation (AVM) development. However, the mechanistic underpinnings of ALK1 signaling modulation by fluid flow and the link to AVMs remain uncertain. We recorded EC responses under varying SS magnitudes and ALK1 ligand concentrations by assaying pSMAD1/5/9 nuclear localization using a custom multi-SS microfluidic device and a custom image analysis pipeline. We extended the previously reported synergy between SS and BMP9 to include BMP10 and BMP9/10. Moreover, we demonstrated that this synergy is effective even at extremely low SS magnitudes (0.4 dyn/cm2) and ALK1 ligand range (femtogram/mL). The synergistic response to ALK1 ligands and SS requires the kinase activity of ALK1. Moreover, ALK1's basal activity and response to minimal ligand levels depend on endocytosis, distinct from cell-cell junctions, cytoskeleton-mediated mechanosensing, or cholesterol-enriched microdomains. However, an in-depth analysis of ALK1 receptor trafficking's molecular mechanisms requires further investigation.
Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Humanos , Células Endoteliais , Ligantes , Telangiectasia Hemorrágica Hereditária/genética , Transdução de Sinais , Proteínas Morfogenéticas ÓsseasRESUMO
The murine helminth parasite Heligmosomoides polygyrus expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-ß, have been named TGM (TGF-ß Μimic). Multiple domains bind to different receptors, including TGF-ß receptors TßRI (ALK5) and TßRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-ß-responsive cell types. In contrast, a related protein, TGM4, targets a much more restricted cell repertoire, primarily acting on myeloid cells, with less potent effects on T cells and lacking activity on other TGF-ß-responsive cell types. TGM4 binds avidly to myeloid cells by flow cytometry, and can outcompete TGM1 for cell binding. Analysis of receptor binding in comparison to TGM1 reveals a 10-fold higher affinity than TGM1 for TGFßR-I (TßRI), but a 100-fold lower affinity for TßRII through Domain 3. Consequently, TGM4 is more dependent on co-receptor binding; in addition to CD44, TGM4 also engages CD49d (Itga4) through Domains 1-3, as well as CD206 and Neuropilin-1 through Domains 4 and 5. TGM4 was found to effectively modulate macrophage populations, inhibiting lipopolysaccharide-driven inflammatory cytokine production and boosting interleukin (IL)-4-stimulated responses such as Arginase-1 in vitro and in vivo. These results reveal that the modular nature of TGMs has allowed the fine tuning of the binding affinities of the TßR- and co-receptor binding domains to establish cell specificity for TGF-ß signalling in a manner that cannot be attained by the mammalian cytokine.
RESUMO
Isotopic labeling of methyl-substituted proteinogenic amino acids with 13C has transformed applications of solution-based NMR spectroscopy and allowed the study of much larger and more complex proteins than previously possible with 15N labeling. Procedures are well-established for producing methyl-labeled proteins expressed in bacteria, with efficient incorporation of 13C-methyl labeled metabolic precursors to enable the isotopic labeling of Ile, Val, and Leu methyl groups. Recently, similar methodology has been applied to enable 13C-methyl labeling of Ile, Val, and Leu in yeast, extending the approach to proteins that do not readily fold when produced in bacteria. Mammalian or insect cells are nonetheless preferable for production of many human proteins, yet 13C-methyl labeling using similar metabolic precursors is not feasible as these cells lack the requisite biosynthetic machinery. Herein, we report versatile and high-yielding synthetic routes to 13C methyl-labeled amino acids based on palladium-catalyzed C(sp3)-H functionalization. We demonstrate the efficient incorporation of two of the synthesized amino acids, 13C-γ2-Ile and 13C-γ1,γ2-Val, into human receptor extracellular domains with multiple disulfides using suspension-cultured HEK293 cells. Production costs are reasonable, even at moderate expression levels of 2-3 mg purified protein per liter of medium, and the method can be extended to label other methyl groups, such as 13C-δ1-Ile and 13C-δ1,δ2-Leu. In summary, we demonstrate the cost-effective production of methyl-labeled proteins in mammalian cells by incorporation of 13C methyl-labeled amino acids generated de novo by a versatile synthetic route.
Assuntos
Aminoácidos , Valina , Animais , Humanos , Leucina/química , Valina/química , Células HEK293 , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Mamíferos/metabolismoRESUMO
Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-ß mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-ß receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-ß signaling in mammalian cells.
Assuntos
Parasitos , Animais , Camundongos , Linfócitos T Reguladores , Transdução de Sinais , Fator de Crescimento Transformador beta , Fatores de Transcrição Forkhead , MamíferosRESUMO
OBJECTIVES: Contributions of TGFß to cancer progression are well documented. However, plasma TGFß levels often do not correlate with clinicopathological data. We examine the role of TGFß carried in exosomes isolated from murine and human plasma as a contributor to disease progression in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: The 4-nitroquinoline-1-oxide (4-NQO) mouse model was used to study changes in TGFß expression levels during oral carcinogenesis. In human HNSCC, TGFß and Smad3 protein expression levels and TGFB1 gene expression were determined. Soluble TGFß levels were evaluated by ELISA and TGFß bioassays. Exosomes were isolated from plasma using size exclusion chromatography, and TGFß content was quantified using bioassays and bioprinted microarrays. RESULTS: During 4-NQO carcinogenesis, TGFß levels in tumour tissues and in serum increased as the tumour progressed. The TGFß content of circulating exosomes also increased. In HNSCC patients, TGFß, Smad3 and TGFB1 were overexpressed in tumour tissues and correlated with increased soluble TGFß levels. Neither TGFß expression in tumours nor levels of soluble TGFß correlated with clinicopathological data or survival. Only exosome-associated TGFß reflected tumour progression and correlated with tumour size. CONCLUSIONS: Circulating TGFß+ exosomes in the plasma of patients with HNSCC emerge as potential non-invasive biomarkers of disease progression in HNSCC.
Assuntos
Biomarcadores Tumorais , Exossomos , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta , Animais , Humanos , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Progressão da Doença , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
The murine helminth parasite Heligmosomoides polygyrus expresses a family of proteins structurally related to TGF-ß Mimic 1 (TGM1), a secreted five domain protein that activates the TGF-ß pathway and converts naïve T lymphocytes to immunosuppressive Tregs. TGM1 signals through the TGF-ß type I and type II receptors, TßRI and TßRII, with domains 1-2 and 3 binding TßRI and TßRII, respectively, and domains 4-5 binding CD44, a co-receptor abundant on T cells. TGM6 is a homologue of TGM1 that is co-expressed with TGM1, but lacks domains 1 and 2. Herein, we show that TGM6 binds TßRII through domain 3, but does not bind TßRI, or other type I or type II receptors of the TGF-ß family. In TGF-ß reporter assays in fibroblasts, TGM6, but not truncated TGM6 lacking domains 4 and 5, potently inhibits TGF-ß- and TGM1-induced signaling, consistent with its ability to bind TßRII but not TßRI or other receptors of the TGF-ß family. However, TGM6 does not bind CD44 and is unable to inhibit TGF-ß and TGM1 signaling in T cells. To understand how TGM6 binds TßRII, the X-ray crystal structure of the TGM6 domain 3 bound to TßRII was determined at 1.4 Å. This showed that TGM6 domain 3 binds TßRII through an interface remarkably similar to the TGF-ß:TßRII interface. These results suggest that TGM6 has adapted its domain structure and sequence to mimic TGF-ß binding to TßRII and function as a potent TGF-ß and TGM1 antagonist in fibroblasts. The coexpression of TGM6, along with the immunosuppressive TGMs that activate the TGF-ß pathway, may prevent tissue damage caused by the parasite as it progresses through its life cycle from the intestinal lumen to submucosal tissues and back again.
RESUMO
Transforming growth factor ß (TGFß) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFß+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFß and angiogenesis-promoting proteins. TGFß+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFß+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFß ligand trap mRER (p < 0.001). TGFß+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFß signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFß emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.
Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Neovascularização Patológica/genética , Fenótipo , Microambiente TumoralRESUMO
The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-ß mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-ß, TGM binds directly to the TGF-ß receptors TßRI and TßRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-ß receptors. We demonstrate that binding is modular, with D1-D2 binding to TßRI and D3 binding to TßRII. D1-D2 and D3 were further shown to compete with TGF-ß(TßRII)2 and TGF-ß for binding to TßRI and TßRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TßRII variants, TGM-D3 was shown to occupy the same site of TßRII as bound by TGF-ß using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.
Assuntos
Proteínas de Helminto , Interações Hospedeiro-Patógeno , Nematospiroides dubius , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta , Animais , Evolução Biológica , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Nematospiroides dubius/classificação , Nematospiroides dubius/genética , Nematospiroides dubius/imunologia , Nematospiroides dubius/metabolismo , Ligação Proteica , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Follicle-stimulating hormone (FSH), a key regulator of ovarian function, is often used in infertility treatment. Gonadal inhibins suppress FSH synthesis by pituitary gonadotrope cells. The TGFß type III receptor, betaglycan, is required for inhibin A suppression of FSH. The inhibin B co-receptor was previously unknown. Here, we report that the gonadotrope-restricted transmembrane protein, TGFBR3L, is the elusive inhibin B co-receptor. TGFBR3L binds inhibin B but not other TGFß family ligands. TGFBR3L knockdown or overexpression abrogates or confers inhibin B activity in cells. Female Tgfbr3l knockout mice exhibit increased FSH levels, ovarian follicle development, and litter sizes. In contrast, female mice lacking both TGFBR3L and betaglycan are infertile. TGFBR3L's function and cell-specific expression make it an attractive new target for the regulation of FSH and fertility.
RESUMO
TGFß is a key regulator of oral squamous cell carcinoma (OSCC) progression, and its potential role as a therapeutic target has been investigated with a limited success. This study evaluates two novel TGFß inhibitors as mono or combinatorial therapy with anti-PD-L1 antibodies (α-PD-L1 Ab) in a murine OSCC model. Immunocompetent C57BL/6 mice bearing malignant oral lesions induced by 4-nitroquinoline 1-oxide (4-NQO) were treated for 4 weeks with TGFß inhibitors mRER (i.p., 50 µg/d) or mmTGFß2-7m (10 µg/d delivered by osmotic pumps) alone or in combination with α-PD-L1 Abs (7× i.p. of 100 µg/72 h). Tumor progression and body weight were monitored. Levels of bioactive TGFß in serum were quantified using a TGFß bioassay. Tissues were analyzed by immunohistology and flow cytometry. Therapy with mRER or mmTGFß2-7m reduced tumor burden (P < 0.05) and decreased body weight loss compared with controls. In inhibitor-treated mice, levels of TGFß in tumor tissue and serum were reduced (P < 0.05), whereas they increased with tumor progression in controls. Both inhibitors enhanced CD8+ T-cell infiltration into tumors and mRER reduced levels of myeloid-derived suppressor cells (P < 0.001). In combination with α-PD-L1 Abs, tumor burden was not further reduced; however, mmTGFß2-7m further reduced weight loss (P < 0.05). The collagen-rich stroma was reduced by using combinatorial TGFß/PD-L1 therapies (P < 0.05), enabling an accelerated lymphocyte infiltration into tumor tissues. The blockade of TGFß signaling by mRER or mmTGFß2-7m ameliorated in vivo progression of established murine OSCC. The inhibitors promoted antitumor immune responses, alone and in combination with α-PD-L1 Abs.
Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Bucais/tratamento farmacológico , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Estudos Longitudinais , Camundongos , Neoplasias Bucais/patologiaAssuntos
Receptores de Activinas Tipo II/sangue , Malformações Arteriovenosas/etiologia , Proteínas Morfogenéticas Ósseas/sangue , Técnica de Fontan , Fator 2 de Diferenciação de Crescimento/sangue , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Complicações Pós-Operatórias/etiologia , Adolescente , Malformações Arteriovenosas/sangue , Malformações Arteriovenosas/prevenção & controle , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Síndrome do Coração Esquerdo Hipoplásico/sangue , Síndrome do Coração Esquerdo Hipoplásico/fisiopatologia , Lactente , Masculino , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/prevenção & controle , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidadesRESUMO
TGFß family ligands, which include the TGFßs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFßs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFß and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFß, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFß signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFß family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.
Assuntos
Ativinas/química , Ativinas/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/química , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Ratos , Fator de Crescimento Transformador beta/metabolismoRESUMO
Betaglycan (BG) and endoglin (ENG), homologous co-receptors of the TGF-ß family, potentiate the signaling activity of TGF-ß2 and inhibin A, and BMP-9 and BMP-10, respectively. BG exists as monomer and forms 1:1 growth factor (GF) complexes, while ENG exists as a dimer and forms 2:1 GF complexes. Herein, the structure of the BG orphan domain (BGO) reveals an insertion that blocks the region that the endoglin orphan domain (ENGO) uses to bind BMP-9, preventing it from binding in the same manner. Using binding studies with domain-deleted forms of TGF-ß and BGO, as well as small-angle X-ray scattering data, BGO is shown to bind its cognate GF in an entirely different manner compared with ENGO. The alternative interfaces likely engender BG and ENG with the ability to selectively bind and target their cognate GFs in a unique temporal-spatial manner, without interfering with one another or other TGF-ß family GFs.
Assuntos
Endoglina/química , Endoglina/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Ratos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peixe-ZebraRESUMO
The flavoprotein d-6-hydroxynicotine oxidase catalyzes an early step in the oxidation of ( R)-nicotine, the oxidation of a carbon-nitrogen bond in the pyrrolidine ring of ( R)-6-hydroxynicotine. The enzyme is a member of the vanillyl alcohol oxidase/ p-cresol methylhydroxylase family of flavoproteins. The effects of substrate modifications on the steady-state and rapid-reaction kinetic parameters are not consistent with the quinone-methide mechanism of p-cresol methylhydroxylase. There is no solvent isotope effect on the kcat/ Kamine value with either ( R)-6-hydroxynicotine or the slower substrate ( R)-6-hydroxynornicotine. The effect of pH on the rapid-reaction kinetic parameters establishes that only the neutral form of the substrate and the correctly protonated form of the enzyme bind. The active-site residues Lys348, Glu350, and Glu352 are all properly positioned for substrate binding. The K348M substitution has only a small effect on the kinetic parameters; the E350A and E350Q substitutions decrease the kcat/ Kamine value by â¼20- and â¼220-fold, respectively, and the E352Q substitution decreases this parameter â¼3800-fold. The kcat/ Kamine-pH profile is bell-shaped. The p Ka values in that profile are altered by replacement of ( R)-6-hydroxynicotine with ( R)-6-hydroxynornicotine as the substrate and by the substitutions for Glu350 and Glu352, although the profiles remain bell-shaped. The results are consistent with a network of hydrogen-bonded residues in the active site being involved in binding the neutral form of the amine substrate, followed by the transfer of a hydride from the amine to the flavin.
Assuntos
Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nicotina/análogos & derivados , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise , Domínio Catalítico , Escherichia coli/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Isótopos/metabolismo , Cinética , Micrococcaceae/metabolismo , Nicotina/química , Nicotina/metabolismo , Oxirredução , Plasmídeos/genética , Especificidade por SubstratoRESUMO
Betaglycan (BG) is a membrane-bound co-receptor of the TGF-ß family that selectively binds transforming growth factor-ß (TGF-ß) isoforms and inhibin A (InhA) to enable temporal-spatial patterns of signaling essential for their functions in vivo Here, using NMR titrations of methyl-labeled TGF-ß2 with BG's C-terminal binding domain, BGZP-C, and surface plasmon resonance binding measurements with TGF-ß2 variants, we found that the BGZP-C-binding site on TGF-ß2 is located on the inner surface of its extended finger region. Included in this binding site are Ile-92, Lys-97, and Glu-99, which are entirely or mostly specific to the TGF-ß isoforms and the InhA α-subunit, but they are unconserved in other TGF-ß family growth factors (GFs). In accord with the proposed specificity-determining role of these residues, BG bound bone morphogenetic protein 2 (BMP-2) weakly or not at all, and TGF-ß2 variants with the corresponding residues from BMP-2 bound BGZP-C more weakly than corresponding alanine variants. The BGZP-C-binding site on InhA previously was reported to be located on the outside of the extended finger region, yet at the same time to include Ser-112 and Lys-119, homologous to TGF-ß2 Ile-92 and Lys-97, on the inside of the fingers. Therefore, it is likely that both TGF-ß2 and InhA bind BGZP-C through a site on the inside of their extended finger regions. Overall, these results identify the BGZP-C-binding site on TGF-ß2 and shed light on the specificity of BG for select TGF-ß-type GFs and the mechanisms by which BG influences their signaling.
Assuntos
Inibinas/metabolismo , Proteoglicanas/química , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/química , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta2/química , Fator de Crescimento Transformador beta2/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Especificidade por SubstratoRESUMO
Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-ß signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß, including binding to mammalian TGF-ß receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-ß or other members of the TGF-ß family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host.