Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
medRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37693403

RESUMO

Background: Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods: We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results: Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions: Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.

2.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759039

RESUMO

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética
3.
Am J Psychiatry ; 180(11): 815-826, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37752828

RESUMO

OBJECTIVE: Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS: Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS: Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS: These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Esquizofrenia , Humanos , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Fatores de Risco , Lipídeos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Loci Gênicos/genética
4.
Genome Med ; 15(1): 60, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528461

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. METHODS: Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. RESULTS: IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. CONCLUSIONS: We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Transtornos Mentais , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/complicações , Eixo Encéfalo-Intestino , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
5.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37503175

RESUMO

While neurological and psychiatric disorders have historically been considered to reflect distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. However, the extent to which these heritable disorders share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate widespread genetic overlap across the disorders, even in the absence of genetic correlations. This indicates that a large set of common variants impact risk of multiple neurological and psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation revealed a range of biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates that neurological and psychiatric disorders share key etiological aspects, which has important implications for disease classification, precision medicine, and clinical practice.

6.
Schizophr Bull ; 49(5): 1345-1354, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319439

RESUMO

BACKGROUND: Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN: GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS: The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS: Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Loci Gênicos , Fenótipo , Contagem de Leucócitos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
7.
JAMA Psychiatry ; 80(7): 738-742, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163253

RESUMO

Importance: Premenstrual disorders are heritable, clinically heterogenous, with a range of affective spectrum comorbidities. It is unclear whether genetic predispositions to affective spectrum disorders or other major psychiatric disorders are associated with symptoms of premenstrual disorders. Objective: To assesss whether symptoms of premenstrual disorders are associated with the genetic liability for major psychiatric disorders, as indexed by polygenic risk scores (PRSs). Design, Setting, and Participants: Women from the Norwegian Mother, Father and Child Cohort Study were included in this genetic association study. PRSs were used to determine whether genetic liability for major depression, bipolar disorder, schizophrenia, attention-deficit/hyperactivity disorder, and autism spectrum disorder were associated with the symptoms of premenstrual disorders, using the PRS for height as a somatic comparator. The sample was recruited across Norway between June 1999 and December 2008, and analyses were performed from July 1 to October 14, 2022. Main Outcomes and Measures: The symptoms of premenstrual disorders were assessed at recruitment at week 15 of pregnancy with self-reported severity of depression and irritability before menstruation. Logistic regression was applied to test for the association between the presence of premenstrual disorder symptoms and the PRSs for major psychiatric disorders. Results: The mean (SD) age of 56 725 women included in the study was 29.0 (4.6) years. Premenstrual disorder symptoms were present in 12 316 of 56 725 participants (21.7%). The symptoms of premenstrual disorders were associated with the PRSs for major depression (ß = 0.13; 95% CI, 0.11-0.15; P = 1.21 × 10-36), bipolar disorder (ß = 0.07; 95% CI, 0.05-0.09; P = 1.74 × 10-11), attention deficit/hyperactivity disorder (ß = 0.07; 95% CI, 0.04-0.09; P = 1.58 × 10-9), schizophrenia (ß = 0.11; 95% CI, 0.09-0.13; P = 7.61 × 10-25), and autism spectrum disorder (ß = 0.03; 95% CI, 0.01-0.05; P = .02) but not with the PRS for height. The findings were confirmed in a subsample of women without a history of psychiatric diagnosis. Conclusions: The results of this genetic association study show that genetic liability for both affective spectrum disorder and major psychiatric disorders was associated with symptoms of premenstrual disorders, indicating that premenstrual disorders have overlapping genetic foundations with major psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Criança , Humanos , Feminino , Adulto , Estudos de Coortes , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/genética , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Fatores de Risco , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença , Herança Multifatorial/genética
8.
Schizophr Bull ; 49(6): 1654-1664, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163672

RESUMO

Low vitamin D (vitD) levels have been consistently reported in schizophrenia (SCZ) suggesting a role in the etiopathology. However, little is known about the role of underlying shared genetic mechanisms. We applied a conditional/conjunctional false discovery rate approach (FDR) on large, nonoverlapping genome-wide association studies for SCZ (N cases = 53 386, N controls = 77 258) and vitD serum concentration (N = 417 580) to evaluate shared common genetic variants. The identified genomic loci were characterized using functional analyses and biological repositories. We observed cross-trait SNP enrichment in SCZ conditioned on vitD and vice versa, demonstrating shared genetic architecture. Applying the conjunctional FDR approach, we identified 72 loci jointly associated with SCZ and vitD at conjunctional FDR < 0.05. Among the 72 shared loci, 40 loci have not previously been reported for vitD, and 9 were novel for SCZ. Further, 64% had discordant effects on SCZ-risk and vitD levels. A mixture of shared variants with concordant and discordant effects with a predominance of discordant effects was in line with weak negative genetic correlation (rg = -0.085). Our results displayed shared genetic architecture between SCZ and vitD with mixed effect directions, suggesting overlapping biological pathways. Shared genetic variants with complex overlapping mechanisms may contribute to the coexistence of SCZ and vitD deficiency and influence the clinical picture.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Vitamina D/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Loci Gênicos
9.
Brain ; 146(8): 3392-3403, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757824

RESUMO

Psychiatric disorders and common epilepsies are heritable disorders with a high comorbidity and overlapping symptoms. However, the causative mechanisms underlying this relationship are poorly understood. Here we aimed to identify overlapping genetic loci between epilepsy and psychiatric disorders to gain a better understanding of their comorbidity and shared clinical features. We analysed genome-wide association study data for all epilepsies (n = 44 889), genetic generalized epilepsy (n = 33 446), focal epilepsy (n = 39 348), schizophrenia (n = 77 096), bipolar disorder (n = 406 405), depression (n = 500 199), attention deficit hyperactivity disorder (n = 53 293) and autism spectrum disorder (n = 46 350). First, we applied the MiXeR tool to estimate the total number of causal variants influencing the disorders. Next, we used the conjunctional false discovery rate statistical framework to improve power to discover shared genomic loci. Additionally, we assessed the validity of the findings in independent cohorts, and functionally characterized the identified loci. The epilepsy phenotypes were considerably less polygenic (1.0 K to 3.4 K causal variants) than the psychiatric disorders (5.6 K to 13.9 K causal variants), with focal epilepsy being the least polygenic (1.0 K variants), and depression having the highest polygenicity (13.9 K variants). We observed cross-trait genetic enrichment between genetic generalized epilepsy and all psychiatric disorders and between all epilepsies and schizophrenia and depression. Using conjunctional false discovery rate analysis, we identified 40 distinct loci jointly associated with epilepsies and psychiatric disorders at conjunctional false discovery rate <0.05, four of which were associated with all epilepsies and 39 with genetic generalized epilepsy. Most epilepsy risk loci were shared with schizophrenia (n = 31). Among the identified loci, 32 were novel for genetic generalized epilepsy, and two were novel for all epilepsies. There was a mixture of concordant and discordant allelic effects in the shared loci. The sign concordance of the identified variants was highly consistent between the discovery and independent datasets for all disorders, supporting the validity of the findings. Gene-set analysis for the shared loci between schizophrenia and genetic generalized epilepsy implicated biological processes related to cell cycle regulation, protein phosphatase activity, and membrane and vesicle function; the gene-set analyses for the other loci were underpowered. The extensive genetic overlap with mixed effect directions between psychiatric disorders and common epilepsies demonstrates a complex genetic relationship between these disorders, in line with their bi-directional relationship, and indicates that overlapping genetic risk may contribute to shared pathophysiological and clinical features between epilepsy and psychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Epilepsias Parciais , Epilepsia Generalizada , Humanos , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Epilepsias Parciais/genética , Genômica , Epilepsia Generalizada/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
10.
World Psychiatry ; 22(1): 4-24, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640404

RESUMO

Psychiatric genetics has made substantial progress in the last decade, providing new insights into the genetic etiology of psychiatric disorders, and paving the way for precision psychiatry, in which individual genetic profiles may be used to personalize risk assessment and inform clinical decision-making. Long recognized to be heritable, recent evidence shows that psychiatric disorders are influenced by thousands of genetic variants acting together. Most of these variants are commonly occurring, meaning that every individual has a genetic risk to each psychiatric disorder, from low to high. A series of large-scale genetic studies have discovered an increasing number of common and rare genetic variants robustly associated with major psychiatric disorders. The most convincing biological interpretation of the genetic findings implicates altered synaptic function in autism spectrum disorder and schizophrenia. However, the mechanistic understanding is still incomplete. In line with their extensive clinical and epidemiological overlap, psychiatric disorders appear to exist on genetic continua and share a large degree of genetic risk with one another. This provides further support to the notion that current psychiatric diagnoses do not represent distinct pathogenic entities, which may inform ongoing attempts to reconceptualize psychiatric nosology. Psychiatric disorders also share genetic influences with a range of behavioral and somatic traits and diseases, including brain structures, cognitive function, immunological phenotypes and cardiovascular disease, suggesting shared genetic etiology of potential clinical importance. Current polygenic risk score tools, which predict individual genetic susceptibility to illness, do not yet provide clinically actionable information. However, their precision is likely to improve in the coming years, and they may eventually become part of clinical practice, stressing the need to educate clinicians and patients about their potential use and misuse. This review discusses key recent insights from psychiatric genetics and their possible clinical applications, and suggests future directions.

11.
Addiction ; 117(3): 600-610, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34472679

RESUMO

BACKGROUND AND AIM: Schizophrenia (SCZ) and bipolar disorder (BD) have a high comorbidity of alcohol use disorder (AUD), and both comorbid AUD and excessive alcohol consumption (AC) have been linked to greater illness severity. We aimed to identify genomic loci jointly associated with SCZ, BD, AUD and AC to gain further insights into their shared genetic architecture. DESIGN: We analysed summary data (P values and Z scores) from genome-wide association studies (GWAS) using conjunctional false discovery rate (conjFDR) analysis, which increases power to discover shared genomic loci. We functionally characterized the identified loci using publicly available biological resources. SETTING: AUD and AC data provided by the Million Veteran Program, derived from the United States Department of Veterans Affairs Healthcare System. SCZ and BD data provided by the Psychiatric Genomics Consortium, based on cohorts from countries in Europe, North America and Australia. PARTICIPANTS: AUD (34 658 cases, 167 346 controls), AC (n = 200 680), SCZ (31 013 cases and 38 918 controls), BD (20 352 cases and 31 358 controls). All participants were of European ancestry. MEASUREMENTS: Genomic loci shared between alcohol traits, SCZ and BD at conjFDR <0.05. FINDINGS: Conditional Q-Q plots showed single-nucleotide polymorphism (SNP) enrichment for both alcohol traits across different levels of significance with SCZ and BD, and vice versa. Using conjFDR analysis we leveraged this genetic enrichment and identified several loci shared between SCZ and AUD (n = 28) and AC (n = 24), BD and AUD (n = 2) and AC (n = 8) at conjFDR <0.05. Among these loci, 24 are novel for AUD, 15 are novel for AC, three are novel for SCZ and one is novel for BD. There was a mixture of same and opposite effect directions among the shared loci. CONCLUSIONS: Alcohol use disorder and alcohol consumption share genomic loci with the psychiatric disorders schizophrenia and bipolar disorder with a mixed pattern of effect directions, indicating a complex genetic relationship between the phenotypes.


Assuntos
Alcoolismo , Transtorno Bipolar , Esquizofrenia , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/epidemiologia , Alcoolismo/genética , Transtorno Bipolar/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/epidemiologia , Esquizofrenia/genética
12.
Transl Psychiatry ; 11(1): 407, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301917

RESUMO

Patients with bipolar disorder (BIP) have a high risk of cardiovascular disease (CVD), despite considerable individual variation. The mechanisms underlying comorbid CVD in BIP remain largely unknown. We investigated polygenic overlap between BIP and CVD phenotypes, including CVD risk factors and coronary artery disease (CAD). We analyzed large genome-wide association studies of BIP (n = 51,710) and CVD phenotypes (n = 159,208-795,640), using bivariate causal mixture model (MiXeR), which estimates the total amount of shared genetic variants, and conjunctional false discovery rate (FDR), which identifies specific overlapping loci. MiXeR revealed polygenic overlap between BIP and body mass index (BMI) (82%), diastolic and systolic blood pressure (20-22%) and CAD (11%) despite insignificant genetic correlations. Using conjunctional FDR < 0.05, we identified 129 shared loci between BIP and CVD phenotypes, mainly BMI (n = 69), systolic (n = 53), and diastolic (n = 53) blood pressure, of which 22 are novel BIP loci. There was a pattern of mixed effect directions of the shared loci between BIP and CVD phenotypes. Functional analyses indicated that the shared loci are linked to brain-expressed genes and involved in neurodevelopment, lipid metabolism, chromatin assembly/disassembly and intracellular processes. Altogether, the study revealed extensive polygenic overlap between BIP and comorbid CVD, implicating shared molecular genetic mechanisms. The mixed effect directions of the shared loci suggest variation in genetic susceptibility to CVD across BIP subgroups, which may underlie the heterogeneity of CVD comorbidity in BIP patients. The findings suggest more focus on targeted lifestyle interventions and personalized pharmacological treatment to reduce CVD comorbidity in BIP.


Assuntos
Transtorno Bipolar , Doenças Cardiovasculares , Transtorno Bipolar/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
JAMA Psychiatry ; 78(9): 1020-1030, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34160554

RESUMO

Importance: Schizophrenia is a complex heritable disorder associated with many genetic variants, each with a small effect. While cortical differences between patients with schizophrenia and healthy controls are consistently reported, the underlying molecular mechanisms remain elusive. Objective: To investigate the extent of shared genetic architecture between schizophrenia and brain cortical surface area (SA) and thickness (TH) and to identify shared genomic loci. Design, Setting, and Participants: Independent genome-wide association study data on schizophrenia (Psychiatric Genomics Consortium and CLOZUK: n = 105 318) and SA and TH (UK Biobank: n = 33 735) were obtained. The extent of polygenic overlap was investigated using MiXeR. The specific shared genomic loci were identified by conditional/conjunctional false discovery rate analysis and were further examined in 3 independent cohorts. Data were collected from December 2019 to February 2021, and data analysis was performed from May 2020 to February 2021. Main Outcomes and Measures: The primary outcomes were estimated fractions of polygenic overlap between schizophrenia, total SA, and average TH and a list of functionally characterized shared genomic loci. Results: Based on genome-wide association study data from 139 053 participants, MiXeR estimated schizophrenia to be more polygenic (9703 single-nucleotide variants [SNVs]) than total SA (2101 SNVs) and average TH (1363 SNVs). Most SNVs associated with total SA (1966 of 2101 [93.6%]) and average TH (1322 of 1363 [97.0%]) may be associated with the development of schizophrenia. Subsequent conjunctional false discovery rate analysis identified 44 and 23 schizophrenia risk loci shared with total SA and average TH, respectively. The SNV associations of shared loci between schizophrenia and total SA revealed en masse concordant association between the discovery and independent cohorts. After removing high linkage disequilibrium regions, such as the major histocompatibility complex region, the shared loci were enriched in immunologic signature gene sets. Polygenic overlap and shared loci between schizophrenia and schizophrenia-associated regions of interest for SA (superior frontal and middle temporal gyri) and for TH (superior temporal, inferior temporal, and superior frontal gyri) were also identified. Conclusions and Relevance: This study demonstrated shared genetic loci between cortical morphometry and schizophrenia, among which a subset are associated with immunity. These findings provide an insight into the complex genetic architecture and associated with schizophrenia.


Assuntos
Córtex Cerebral/patologia , Estudo de Associação Genômica Ampla , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto , Loci Gênicos , Humanos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
14.
Transl Psychiatry ; 11(1): 3, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414458

RESUMO

Clinical and epidemiological evidence suggest that loneliness is associated with severe mental disorders (SMDs) and increases the risk of cardiovascular disease (CVD). However, the mechanisms underlying the relationship between loneliness, SMDs, and CVD risk factors remain unknown. Here we explored overlapping genetic architecture and genetic loci shared between SMDs, loneliness, and CVD risk factors. We analyzed large independent genome-wide association study data on schizophrenia (SCZ), bipolar disorder (BD), major depression (MD), loneliness and CVD risk factors using bivariate causal mixture mode (MiXeR), which estimates the total amount of shared variants, and conditional false discovery rate to evaluate overlap in specific loci. We observed substantial genetic overlap between SMDs, loneliness and CVD risk factors, beyond genetic correlation. We identified 149 loci jointly associated with loneliness and SMDs (MD n = 67, SCZ n = 54, and BD n = 28), and 55 distinct loci jointly associated with loneliness and CVD risk factors. A total of 153 novel loneliness loci were found. Most of the shared loci possessed concordant effect directions, suggesting that genetic risk for loneliness may increase the risk of both SMDs and CVD. Functional analyses of the shared loci implicated biological processes related to the brain, metabolic processes, chromatin and immune system. Altogether, the study revealed polygenic overlap between loneliness, SMDs and CVD risk factors, providing new insights into their shared genetic architecture and common genetic mechanisms.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Loci Gênicos , Predisposição Genética para Doença , Humanos , Solidão , Polimorfismo de Nucleotídeo Único , Fatores de Risco
15.
Genome Res ; 21(4): 505-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21393386

RESUMO

Gene fusions involving members of the RAF family of protein kinases have recently been identified as characteristic aberrations of low-grade astrocytomas, the most common tumors of the central nervous system in children. While it has been shown that these fusions cause constitutive activation of the ERK/MAPK pathway, very little is known about their formation. Here, we present a detailed analysis of RAF gene fusion breakpoints from a well-characterized cohort of 43 low-grade astrocytomas. Our findings show that the rearrangements that generate these RAF gene fusions may be simple or complex and that both inserted nucleotides and microhomology are common at the DNA breakpoints. Furthermore, we identify novel enrichment of microhomologous sequences in the regions immediately flanking the breakpoints. We thus provide evidence that the tandem duplications responsible for these fusions are generated by microhomology-mediated break-induced replication (MMBIR). Although MMBIR has previously been implicated in the pathogenesis of other diseases and the evolution of eukaryotic genomes, we demonstrate here that the proposed details of MMBIR are consistent with a recurrent rearrangement in cancer. Our analysis of repetitive elements, Z-DNA and sequence motifs in the fusion partners identified significant enrichment of the human minisatellite conserved sequence/χ-like element at one side of the breakpoint. Therefore, in addition to furthering our understanding of low-grade astrocytomas, this study provides insights into the molecular mechanistic details of MMBIR and the sequence of events that occur in the formation of genomic rearrangements.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Pontos de Quebra do Cromossomo , Fusão Gênica/genética , Quinases raf/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Replicação do DNA/genética , Ordem dos Genes , Rearranjo Gênico/genética , Humanos , Lactente , Masculino , Repetições Minissatélites , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Adulto Jovem
16.
J Cell Physiol ; 222(3): 509-14, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19937730

RESUMO

Low-grade astrocytomas (LGAs) are the most common type of brain tumor in children. Until recently, very little was known about the underlying biology and molecular genetics of these tumors. However, within the past year a number of studies have shown that the MAPK pathway is constitutively activated in a high proportion of LGAs. Several genetic aberrations which generate this deregulation of the MAPK pathway have been identified, most notably gene fusions between KIAA1549 and BRAF. In this review we summarize these findings, discuss how these gene fusions may arise and consider possible implications for diagnosis and treatment.


Assuntos
Astrocitoma/enzimologia , Neoplasias Encefálicas/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Adolescente , Astrocitoma/genética , Astrocitoma/patologia , Astrocitoma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Lactente , Recém-Nascido , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA