Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236163

RESUMO

Microcellular injection moulding is an important injection moulding technique to create foaming plastic parts. However, there are no consistent conclusions on the impact of processing parameters on the cell morphology of microcellular injection moulded parts. This paper investigates the influence of the main processing parameters, such as melt temperature, mould temperature, injection pressure, flow rate, shot volume and gas dosage amount, on the average cell size and weight reduction of a talc-reinforced polypropylene square part (165 mm × 165 mm × 3.2 mm), using the commercial software Moldex 3D. The effect of each parameter is investigated considering a range of values and the simulation results were compared with published experimental results. The differences between numerical and experimental trends are discussed.

2.
Materials (Basel) ; 14(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361403

RESUMO

Microcellular injection moulding (MuCell®) is a polymer processing technology that uses a supercritical fluid inert gas, CO2 or N2, to produce light-weight products. Due to environmental pressures and the requirement of light-weight parts with good mechanical properties, this technology recently gained significant attention. However, poor surface appearance and limited mechanical properties still prevent the wide applications of this technique. This paper reviews the microcellular injection moulding process, main characteristics of the process, bubble nucleation and growth, and major recent developments in the field. Strategies to improve both the surface quality and mechanical properties are discussed in detail as well as the relationships between processing parameters, morphology, and surface and mechanical properties. Modelling approaches to simulate microcellular injection moulding and the mathematical models behind Moldex 3D and Moldflow, the two most commonly used software tools by industry and academia, are reviewed, and the main limitations are highlighted. Finally, future research perspectives to further develop this technology are also discussed.

3.
Polymers (Basel) ; 12(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198067

RESUMO

Lightweighting is one of the key solutions to reduce the carbon footprint of vehicles. Nowadays, it is still challenging to achieve this target because there is a conflict between the cost and final material performance, as well as the fact that many lightweight solutions are restricted to laboratory or small-scale production. In this work, a commercially feasible strategy was adopted to fabricate materials for lightweight applications. Hollow glass bubbles, jute fibres, and rubber powder were used as fillers with polypropylene as the base polymer. Various samples were fabricated using conventional and MuCell® injection moulding. Their performance was then characterised by their density and morphological, mechanical, and rheological properties. A comparison among hybrid fillers/polypropylene compounds with and without MuCell® technology was investigated. The filler hybridisation resulted in not only a density reduction of up to approximately 10%, but also improved tensile/flexural modulus and strength. The use of MuCell® led to a further reduction in density of roughly 10%. Meanwhile, although some compounds fabricated by MuCell® exhibited some deterioration in their tensile yield strength, tensile modulus, and impact strength, they maintained acceptable mechanical properties for automotive applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA