Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Spine Surg ; 15(6): 1201-1209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35086878

RESUMO

PURPOSE: Degeneration of the intervertebral disc is considered to be central in pain pathogenesis in patients suffering from chronic low back pain (LBP). In recent years, the injection of mesenchymal stromal cells (MSCs) into the disc to arrest or reverse the degenerative process has been proposed as an alternative therapy. The aim of the present study was to investigate the feasibility of using iron-labeled MSCs for intradiscal injection in patients with long-standing LBP. METHODS: Ten patients (7 men, 3 women, mean age 40 years, range 26-53) with chronic LBP and confirmed disc degeneration on magnetic resonance imaging (MRI) were recruited from the waiting list for planned surgery. Injection of autologous, expanded, and iron-labeled bone marrow-derived MSCs (BM-MSCs) into 1 or 2 disc levels was undertaken. Follow-up consisted of monitoring of adverse events, regular MRI examinations, and collection of patient-reported outcome measures (PROMs) for a minimum of 2 years. RESULTS: No complications could be detected, neither clinically nor on MRI. No statistically significant improvement was seen for PROMs on a group level up to 2 years postinjection. Three of 10 patients opted to proceed with the initially planned surgery within the first year and 2 more within 3 years postinjection. CONCLUSION: Results from this pilot cohort study show that injection of autologous expanded iron-labeled BM-MSCs is a safe procedure, in accordance with the existing body of evidence. The clinical result warrants further larger studies. LEVEL OF EVIDENCE: 4 for therapeutic studies.

2.
Stem Cell Res Ther ; 11(1): 443, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066809

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

3.
Cells Tissues Organs ; 209(2-3): 144-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32829335

RESUMO

Degradation of extracellular matrix (ECM) in intervertebral disks (IVDs) during IVD degeneration plays a vital role in low back pain (LBP). In healthy IVDs, synthesis and degradation of ECM are kept in balance by matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs. MMPs are enzymes responsible for ECM degradation, and their expression levels are known to increase in degenerated disks. However, the exact pathophysiological concentration of MMP-1 in the degenerated disks of patients with chronic LBP has not been reported previously. Factors secreted by human mesenchymal stem cells (hMSCs) have shown positive results in cell therapy of degenerated disks. The aim of this study was to investigate the pathophysiological MMP-1 concentration (in ng/mL) in degenerated disk tissue and to evaluate if conditioned media (CM) from hMSCs could mitigate the effects of MMP-1 at the detected levels in a 3D in vitro disk cell (DC) pellet model. Tissue levels of MMP-1 were quantified in disk tissue collected from 6 chronic LBP patients undergoing surgery. DC pellet cultures were performed to investigate the effects of MMP-1 alone and the effects of conditioned media (CM) in the presence of MMP-1. MMP-1 was introduced in the pellets on day 14 at concentrations of 5, 50, or 100 ng/mL. The pellets were harvested on day 28 and evaluated for cell viability, proliferation, and ECM production. The mean concentration of MMP-1 in disk tissue was 151 ng/mL. Results from pellet cultures demonstrated a higher number of viable cells, glycosaminoglycan production, and ECM accumulation in the CM group even in the presence of MMP-1 compared to the controls. However, the level decreased with increasing MMP-1 concentration. The results demonstrated that CM has the ability to mitigate matrix degradation property of MMP-1 up to 50 ng/mL suggesting that CM could potentially be used to treat early stages of disk degeneration.


Assuntos
Degeneração do Disco Intervertebral/enzimologia , Metaloproteinase 1 da Matriz/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sinais Direcionadores de Proteínas , Adulto , Proliferação de Células , Sobrevivência Celular , Feminino , Fluorescência , Glicosaminoglicanos/metabolismo , Humanos , Disco Intervertebral/enzimologia , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Masculino
4.
Stem Cell Res Ther ; 11(1): 323, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727623

RESUMO

BACKGROUND: Extracellular vesicles (EVs) from human mesenchymal stem cells (hMSCs) are known to be mediators of intercellular communication and have been suggested as possible therapeutic agents in many diseases. Their potential use in intervertebral disc (IVD) degeneration associated with low back pain (LBP) is yet to be explored. Since LBP affects more than 85% of the western population resulting in high socioeconomic consequences, there is a demand for exploring new and possibly mini-invasive treatment alternatives. In this study, the effect of hMSC-derived small EVs (sEVs) on degenerated disc cells (DCs) isolated from patients with degenerative discs and chronic LBP was investigated in a 3D in vitro model. METHODS: hMSCs were isolated from bone marrow aspirate, and EVs were isolated from conditioned media of the hMSCs by differential centrifugation and filtration. 3D pellet cultures of DCs were stimulated with the sEVs at 5 × 1010 vesicles/ml concentration for 28 days and compared to control. The pellets were harvested at days 7, 14, and 28 and evaluated for cell proliferation, viability, ECM production, apoptotic activity, chondrogenesis, and cytokine secretions. RESULTS: The findings demonstrated that treatment with sEVs from hMSCs resulted in more than 50% increase in cell proliferation and decrease in cellular apoptosis in degenerated DCs from this patient group. ECM production was also observed as early as in day 7 and was more than three times higher in the sEV-treated DC pellets compared to control cultures. Further, sEV treatment suppressed secretion of MMP-1 in the DCs. CONCLUSION: hMSC-derived sEVs improved cell viability and expedited chondrogenesis in DCs from degenerated IVDs. These findings open up for new tissue regeneration treatment strategies to be developed for degenerative disorders of the spine.


Assuntos
Vesículas Extracelulares , Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Condrogênese , Humanos , Degeneração do Disco Intervertebral/terapia
5.
Tissue Eng Part A ; 26(1-2): 47-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578928

RESUMO

Low back pain is one of the most common disorders and believed to be due to intervertebral disc degeneration. Transplantation of human mesenchymal stem cells (hMSCs) is suggested as potential treatment option. Bone morphogenetic growth factor 3 (BMP-3) promotes chondrogenesis and is proven effective in enhancing chondrogenesis in hMSCs pretreated with interleukin-1 beta (IL-1ß) in hydrogel model. Three-dimensional co-cultures of hMSCs and disc cells (DCs) have previously been demonstrated to result in increased proteoglycan production. The aim was to study the effects of BMP-3 on hMSCs, DCs, as well as hMSCs and DCs in co-culture in a pellet system, both as single treatment and after pretreatment of IL-1ß. Cell pellet cultures with hMSCs, DCs, and co-culture (1:1 ratio) were performed and stimulated with BMP-3 at 1 or 10 ng/mL concentrations. For pretreatment (PRE-T), cell pellets were first stimulated with IL-1ß, for 24 h, and then BMP-3. The pellets were harvested on day 7, 14, and 28. Results demonstrated that BMP-3 stimulation at 10 ng/mL promoted cell viability, proteoglycan accumulation, as well as chondrogenesis in all pellet groups compared to 1 ng/mL. Cellular proliferation and chondrogenic differentiation of hMSCs were best promoted by PRE-T at 10 ng/mL, whereas BMP-3 best enhanced chondrogenesis in DC and co-culture pellets at the same concentration. Impact Statement Current therapies for low back pain include pain modulation and surgery, which do not tackle the underlying cellular mechanisms of the degenerated intervertebral discs (IVDs). To develop an understanding of the degeneration process and to further reverse its course, the effects of growth factor and cytokine on the native cells of the IVDs were investigated, revealing the potency of bone morphogenetic growth factor 3 on disc cells (DCs) and combined culture of mesenchymal stem cells and DCs. These results may impact future strategies in development of cell therapies that could directly influence the IVD degeneration process, which might alter the treatment models of today.


Assuntos
Dor Lombar/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Morfogenética Óssea 3/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Condrogênese/genética , Condrogênese/fisiologia , Técnicas de Cocultura , Humanos , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Fatores de Transcrição SOX9/metabolismo
6.
Cells Tissues Organs ; 207(1): 34-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269492

RESUMO

In western countries, lower back pain (LBP) is one of the most common disorders, experienced by more than 80% of the population. Chronic LBP due to disc degeneration has been linked to ongoing inflammatory processes in the disc and endplates. Pain effects the body in different ways, inducing a general stress response in which the body responds by releasing the stress hormone cortisol. Little is known about the impact of pain-induced stress on the progression of disc degeneration. Thus, the effects of cortisol on disc cells (DCs) and human mesenchymal stem cells (hMSCs) were explored in vitro with the objective of investigating the repercussions of cortisol on these cell types involved in de- and regenerative mechanisms of the disc. DC and hMSC pellet cultures were exposed to cortisol at two concentrations (150 and 300 ng/mL) for 28 days to simulate pain-induced stress. Cell viability, histological staining, and GAG DNA, along with apo-ptotic assays were conducted. Detection of OCT4, SOX9, IL-1R, and CXCR2 expressions was performed by immunohistochemistry. With cortisol treatment, restricted cell proliferation and less GAG production in both DCs and hMSCs were observed. Suppression of the differentiation and immunomodulatory efficacy of hMSCs was also detected. Moreover, elevated expressions of IL-1R and CXCR2 were detected in both cell types. To conclude, constant exposure to cortisol even at a physiological level enhanced pathological cellular processes in both DCs and hMSCs, which further jeopardized chondrogenesis. This suggests that cortisol resulting from pain-induced stress is a contributing component of intervertebral disc degeneration and may negatively affect regenerative attempts of the disc.


Assuntos
Hidrocortisona/farmacologia , Disco Intervertebral/patologia , Dor Lombar/patologia , Células-Tronco Mesenquimais/patologia , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-8B/metabolismo
7.
Stem Cells Dev ; 28(17): 1203-1211, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237488

RESUMO

Low back pain is a major health issue and one main cause to this condition is believed to be intervertebral disc (IVD) degeneration. Stem cell therapy for degenerated discs using mesenchymal stromal cells (MSCs) has been suggested. The aim of the study was to investigate the presence and distribution pattern of autologous MSCs transplanted into degenerated IVDs in patients and explanted posttransplantation. IVD tissues from four patients (41, 45, 47, and 47 years of age) participating in a clinical feasibility study on MSC transplantation to degenerative discs were investigated. Three patients decided to undergo fusion surgery at time points 8 months and one patient at 28 months posttransplantation. Pretransplantation, MSCs from bone marrow aspirate were isolated by centrifugation in FICOLL® test tubes and cultured (passage 1). Before transplantation, MSCs were labeled with 1 mg/mL iron sucrose (Venofer®) and 1 × 106 MSCs were transplanted into degenerated IVDs. At the time point of surgery, IVD tissues were collected. IVD tissue samples were fixated, embedded in paraffin, and sections prepared. IVD samples were stained with Prussian Blue, by which iron deposits are visualized and examined (light microscopy). Immunohistochemistry (IHC), including SOX9 (sex determining region Y box 9), Coll2A1 (collagen 2A1), and cell viability (TUNEL) were performed. Cells positive for iron deposits were observed in IVD tissues (3/4 patients). The cells/iron deposits were observed in clusters and/or as solitary cells in regions in IVD tissue samples [regions of interest (ROIs)]. By IHC, SOX9- and Coll2A1-positive cells were detected in the same regions as the detected cells/iron deposits. A few nonviable cells were detected by TUNEL assay in ROIs. Results demonstrated that MSCs, labeled with iron sucrose, transplanted into degenerated IVDs were detectable 8 months posttransplantation. The detected cellular activity indicates that MSCs have differentiated into chondrocyte-like cells and that the injected MSCs and/or their progeny have survived since the cells were found in large cluster and as solitary cells which were distributed at different parts of the IVD.


Assuntos
Degeneração do Disco Intervertebral/terapia , Dor Lombar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Adulto , Movimento Celular , Células Cultivadas , Condrogênese , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Feminino , Humanos , Injeções Espinhais , Degeneração do Disco Intervertebral/patologia , Ferro/metabolismo , Dor Lombar/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
8.
Cells Tissues Organs ; 208(1-2): 76-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32092752

RESUMO

Low back pain is experienced by a large number of people in western countries and may be caused and influenced by many different pathologies and psychosocial factors including disc degeneration. Disc degeneration involves the increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the disc environment, which leads to the loss of extracellular matrix (ECM) and the viability of the native disc cells (DCs). Treatment approaches using growth factors and cell therapy have been proposed due to the compelling results that growth factors and mesenchymal stem cells (MSCs) can influence the degenerated discs. The aim of this study was to investigate the effects of conditioned media (CM) from human MSCs (hMSCs) and connective tissue growth factor (CTGF) and TGF-ß on disc cells, and hMSCs isolated from patients with degenerative discs and severe low back pain. The aim was also to examine the constituents of CM in order to study the peptides that could bring about intervertebral disc (IVD) regeneration. DCs and hMSC pellets (approx.. 200,000 cells) were cultured and stimulated with hMSC-derived CM or CTGF and TGF-ß over 28 days. The effects of CM and CTGF on DCs and hMSCs were assessed via cell viability, proteoglycan production, the expression of ECM proteins, and chondrogenesis in 3D pellet culture. To identify the constituents of CM, CM was analyzed with tandem mass spectrometry. The findings indicate that CM enhanced the cellular viability and ECM production of DCs while CTGF and the control exhibited nonsignificant differences. The same was observed in the hMSC group. Mass spectrometry analysis of CM identified >700 peptides, 129 of which showed a relative abundance of ≥2 (CTGF among them). The results suggest that CM holds potential to counter the progression of disc degeneration, likely resulting from the combination of all the substances released by the hMSCs. The soluble factors released belong to different peptide families. The precise mechanism underlying the regenerative effect needs to be investigated further, prior to incorporating peptides in the development of new treatment strategies for low back pain that is potentially caused by IVD degeneration.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Disco Intervertebral , Células-Tronco Mesenquimais/metabolismo , Adulto , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Degeneração do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Dor Lombar/etiologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células/métodos , Fator de Crescimento Transformador beta/farmacologia
9.
Tissue Eng Part A ; 24(9-10): 775-785, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28978269

RESUMO

Low back pain is one of the most common ailments in western countries afflicting more than 80% of the population, and the main cause is considered to be degeneration of intervertebral discs. Interleukin-1ß (IL-1ß) is a vital inflammatory cytokine found in abundance in degenerated disc environment, whereas bone morphogenetic growth factor-3 (BMP-3) is believed to promote chondrogenesis through transforming growth factor-beta (TGF-ß) pathway. The aim was to study the effects of BMP-3, IL-1ß, and combination (pretreatment with IL-1ß) on human mesenchymal stem cells (hMSCs) encapsulated in PuraMatrix™ hydrogel (Phg) especially in the absence of TGF-ß in order to investigate the proliferation and differentiation ability of hMSCs over 28-day period. One hundred microliters of hMSCs' cell suspension was encapsulated between two layers of 100 µL hydrogels forming a sandwich-like structure. The encapsulated hMSCs were cultured in two sets of media, chondrogenic (C) and nonchondrogenic (nC) media, along with addition of BMP-3 (10 ng/mL) and IL-1ß (10 ng/mL). To study the combined effects of BMP-3 and IL-1ß, the encapsulated hMSCs were first pretreated with relevant media containing IL-1ß for 24 h, and then the media was replaced by media containing BMP-3 for the remaining experimental time period. IL-1ß pretreatment was carried out in both C and nC media. The samples were collected at day 7, 14, and 28. Proliferation and differentiation of hMSCs into chondrocyte-like cells were observed in all samples. Proteoglycan accumulation was observed in pretreatment samples in C media. The protein and gene expression of Sox-9 and COL2A1, respectively, showed the occurrence of chondrogenesis in all samples. High cell viability, proliferation, and differentiation were achieved in this in vitro model confirming that BMP-3 alone in the absence of TGF-ß could drive hMSCs into chondrogenic lineage. Pretreatment with IL-1ß followed by BMP-3 stimulation resulted in high proteoglycan accumulation compared to stimulation with growth factors or cytokine alone. This suggests that pretreatment with a pro-inflammatory cytokine before driving them into a chondrogenic lineage might be of importance also in vivo.


Assuntos
Proteína Morfogenética Óssea 3/farmacologia , Condrogênese/efeitos dos fármacos , Interleucina-1beta/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo II/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Mesenquimais/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA