Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37387321

RESUMO

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Quinoxalinas/farmacologia , Solubilidade , Relação Estrutura-Atividade
2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955932

RESUMO

Kainate receptors belong to the family of glutamate receptors ion channels, which are responsible for the majority of rapid excitatory synaptic transmission in the central nervous system. The therapeutic potential of kainate receptors is still poorly understood, which is also due to the lack of potent and subunit-selective pharmacological tools. In search of selective ligands for the GluK3 kainate receptor subtype, a series of quinoxaline-2,3-dione analogues was synthesized and pharmacologically characterized at selected recombinant ionotropic glutamate receptors. Among them, compound 28 was found to be a competitive GluK3 antagonist with submicromolar affinity and unprecedented high binding selectivity, showing a 400-fold preference for GluK3 over other homomeric receptors GluK1, GluK2, GluK5 and GluA2. Furthermore, in functional assays performed for selected metabotropic glutamate receptor subtypes, 28 did not show agonist or antagonist activity. The molecular determinants underlying the observed affinity profile of 28 were analyzed using molecular docking and molecular dynamics simulations performed for individual GluK1 and GluK3 ligand-binding domains.


Assuntos
Receptores de Ácido Caínico , Ligantes , Simulação de Acoplamento Molecular , Domínios Proteicos , Receptores de Ácido Caínico/metabolismo , Receptor de GluK3 Cainato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA