Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(2): eadd6439, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630504

RESUMO

We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.

2.
Astrobiology ; 23(1): 76-93, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520604

RESUMO

The goals of Mars exploration are evolving beyond describing environmental habitability at global and regional scales to targeting specific locations for biosignature detection, sample return, and eventual human exploration. An increase in the specificity of scientific goals-from follow the water to find the biosignatures-requires parallel developments in strategies that translate terrestrial Mars-analog research into confident identification of rover-explorable targets on Mars. Precisely how to integrate terrestrial, ground-based analyses with orbital data sets and transfer those lessons into rover-relevant search strategies for biosignatures on Mars remains an open challenge. Here, leveraging small Unmanned Aerial System (sUAS) technology and state-of-the-art fully convolutional neural networks for pixel-wise classification, we present an end-to-end methodology that applies Deep Learning to map geomorphologic units and quantify feature identification confidence. We used this method to assess the identification confidence of rover-explorable habitats in the Mars-analog Salar de Pajonales over a range of spatial resolutions and found that spatial resolutions two times better than are available from Mars would be necessary to identify habitats in this study at the 1-σ (85%) confidence level. The approach we present could be used to compare the identifiability of habitats across Mars-analog environments and focus Mars exploration from the scale of regional habitability to the scale of specific habitats. Our methods could also be adapted to map dome- and ridge-like features on the surface of Mars to further understand their origin and astrobiological potential.


Assuntos
Aprendizado Profundo , Marte , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos , Ecossistema
3.
Astrobiology ; 19(9): 1075-1102, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335163

RESUMO

Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Ciclo do Carbono , Planeta Terra , Compostos Férricos/análise , Minerais/análise , Ciclo do Nitrogênio , Incerteza
4.
Proc Natl Acad Sci U S A ; 114(11): 2819-2824, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242686

RESUMO

The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.

5.
Sci Total Environ ; 587-588: 449-456, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258748

RESUMO

Elemental sulfur (S0) accumulates in the environment from anthropogenic sources as a byproduct from oil and gas refining and from trap and skeet shooting targets. Bacteria can oxidize S0 to H2SO4, which acidifies soil. We explored whether combinations of soil amendments can be used to remediate acidic soils contaminated with S0 by restoring soil chemistry, plant growth, and bacterial communities in a greenhouse. Results were compared to a contamination gradient in a field that had been limed with CaMg(CO3)2 two years prior. Amendments in the greenhouse included CaCO3 by itself, and in combination with fertilizer, compost, biochar, and chitin. Amended soils were incubated for one week and half of all containers were planted with Poa nevadensis. We sequenced bacterial DNA from a subset of amended soils and along the field gradient. CaCO3 additions in the greenhouse initially raised the pH of contaminated soil to values found in uncontaminated soils. However, pH decreased over time, which was likely caused by the oxidation of S0 to H2SO4. This was also apparent in the field, where CaCO3 additions raised pH to 4 but not to the desired value of 5 or higher. Plants in the greenhouse failed to grow in the unamended contaminated soil, but CaCO3 alone reduced concentrations of toxic cations and resulted in more plant growth than in the uncontaminated soil. CaCO3 also partially restored the bacterial communities in the greenhouse and in the field by increasing richness and diversity to near values found in uncontaminated soil, suggesting that bacteria can be resilient to prolonged acidic conditions. Organic amendments did not provide a significant benefit to restoration. This study demonstrates that acid neutralization alone can restore abiotic and biotic components and productivity of soils contaminated with S0, but multiple CaCO3 applications may be required to avoid future acidification.

6.
Sci Total Environ ; 539: 546-550, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26383856

RESUMO

Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, P<0.001), which indicated the oxidation of S(0) to H2SO4. Sulfate was negatively correlated with pH (ρ=-0.93, P<0.001) because insufficient CaCO3 existed in the targets to neutralize all the acid produced from S(0) oxidation. Plant cover decreased with decreasing soil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets.


Assuntos
Monitoramento Ambiental , Armas de Fogo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Concentração de Íons de Hidrogênio
7.
Astrobiology ; 8(2): 253-66, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18393691

RESUMO

The jarosite group minerals have received increasing attention since the discovery of jarosite on the martian surface by the Mars Exploration Rover Opportunity. Given that jarosite can incorporate foreign ions within its structure, we have investigated the use of jarosite as an indicator of aqueous and biological processes on Earth and Mars. The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various locations worldwide. One of the ions from the natural jarosites has been attributed to glycine because it was systematically observed in combinations of glycine with synthetic ammonium and potassium jarosites, Na(2)SO(4) and K(2)SO(4). The ability to observe these organic signatures in jarosite samples with an in situ instrumental technique, such as the one employed in this study, furthers the goals of planetary geologists to determine whether signs of life (e.g., the presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Compostos Férricos/análise , Glicina/análise , Marte , Espectrometria de Massas , Sulfatos/análise , Análise de Fourier , Lasers , Origem da Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA