Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 149(2): 1324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33639785

RESUMO

Wireless transmission of audio from or to signal processors of cochlear implants (CIs) is used to improve speech understanding of CI users. This transmission requires wireless communication to exchange the necessary data. Because they are battery powered devices, energy consumption needs to be kept low in CIs, therefore making bitrate reduction of the audio signals necessary. Additionally, low latency is essential. Previously, a codec for the electrodograms of CIs, called the Electrocodec, was proposed. In this work, a subjective evaluation of the Electrocodec is presented, which investigates the impact of the codec on monaural speech performance. The Electrocodec is evaluated with respect to speech recognition and quality in ten CI users and compared to the Opus audio codec. Opus is a low latency and low bitrate audio codec that best met the CI requirements in terms of bandwidth, bitrate, and latency. Achieving equal speech recognition and quality as Opus, the Electrocodec achieves lower mean bitrates than Opus. Actual rates vary from 24.3 up to 53.5 kbit/s, depending on the codec settings. While Opus has a minimum algorithmic latency of 5 ms, the Electrocodec has an algorithmic latency of 0 ms.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Elétrica , Ruído
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4168-4172, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946788

RESUMO

Binaural sound coding strategies can improve speech intelligibility for cochlear implant (CI) users. These require a signal transmission between two CIs. As power consumption needs to be kept low in CIs, efficient coding or bit-rate reduction of the signals is necessary. In this work, it is proposed to code the electrical signals or excitation patterns (EP) of the CI instead of the audio signals captured by the microphones. For this purpose we designed a differential pulse code modulation based codec with zero algorithmic delay to code the EP of the advanced combination encoder (ACE) sound coding strategy for CIs. Our EP codec was compared to the G.722 64 kbit/s audio codec using the signal-to-noise ratio (SNR) as objective measure of quality. On two audio-sets the mean SNR was 0.5 to 13.9 dB higher when coding the EP with the proposed coding method while achieving a mean bit-rate between 34.1 and 40.3 kbit/s.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Estimulação Elétrica , Humanos , Inteligibilidade da Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA