Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653875

RESUMO

Hedgehog (Hh) ligands orchestrate tissue patterning and growth by acting as morphogens, dictating different cellular responses depending on ligand concentration. Cellular sensitivity to Hh ligands is influenced by heterotrimeric G protein activity, which controls production of the second messenger 3',5'-cyclic adenosine monophosphate (cAMP). cAMP in turn activates Protein kinase A (PKA), which functions as an inhibitor and (uniquely in Drosophila) as an activator of Hh signalling. A few mammalian Gαi- and Gαs-coupled G protein-coupled receptors (GPCRs) have been shown to influence Sonic hedgehog (Shh) responses in this way. To determine whether this is a more-general phenomenon, we carried out an RNAi screen targeting GPCRs in Drosophila. RNAi-mediated depletion of more than 40% of GPCRs tested either decreased or increased Hh responsiveness in the developing Drosophila wing, closely matching the effects of Gαs and Gαi depletion, respectively. Genetic analysis indicated that the orphan GPCR Mthl5 lowers cAMP levels to attenuate Hh responsiveness. Our results identify Mthl5 as a new Hh signalling pathway modulator in Drosophila and suggest that many GPCRs may crosstalk with the Hh pathway in mammals.


Assuntos
Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Animais Geneticamente Modificados , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas Hedgehog/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Masculino , Fenótipo , Receptores Acoplados a Proteínas G/genética , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
2.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32960945

RESUMO

Proteins of the ezrin, radixin, and moesin (ERM) family control cell and tissue morphogenesis. We previously reported that moesin, the only ERM in Drosophila, controls mitotic morphogenesis and epithelial integrity. We also found that the Pp1-87B phosphatase dephosphorylates moesin, counteracting its activation by the Ste20-like kinase Slik. To understand how this signaling pathway is itself regulated, we conducted a genome-wide RNAi screen, looking for new regulators of moesin activity. We identified that Slik is a new member of the striatin-interacting phosphatase and kinase complex (STRIPAK). We discovered that the phosphatase activity of STRIPAK reduces Slik phosphorylation to promote its cortical association and proper activation of moesin. Consistent with this finding, inhibition of STRIPAK phosphatase activity causes cell morphology defects in mitosis and impairs epithelial tissue integrity. Our results implicate the Slik-STRIPAK complex in the control of multiple morphogenetic processes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/fisiologia , Mitose , Morfogênese , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Animais , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliais/citologia , Ensaios de Triagem em Larga Escala , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Serina-Treonina Quinases/genética
4.
Nat Cell Biol ; 22(1): 120-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871319

RESUMO

Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos/fisiologia , Animais , Drosophila , Humanos , Ligação Proteica/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Development ; 146(20)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31511253

RESUMO

Talin is the major scaffold protein linking integrin receptors with the actin cytoskeleton. In Drosophila, extended Talin generates a stable link between the sarcomeric cytoskeleton and the tendon matrix at muscle attachment sites. Here, we identify phosphorylation sites on Drosophila Talin by mass spectrometry. Talin is phosphorylated in late embryogenesis when muscles differentiate, especially on T152 in the exposed loop of the F1 domain of the Talin head. Localization of a mutated version of Talin (Talin-T150/T152A) is reduced at muscle attachment sites and can only partially rescue muscle attachment compared with wild-type Talin. We also identify Slik as the kinase phosphorylating Talin at T152. Slik localizes to muscle attachment sites, and the absence of Slik reduces the localization of Talin at muscle attachment sites causing phenotypes similar to Talin-T150/T152A. Thus, our results demonstrate that Talin phosphorylation by Slik plays an important role in fine-tuning Talin recruitment to integrin adhesion sites and maintaining muscle attachment.


Assuntos
Proteínas de Drosophila/metabolismo , Talina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Citoesqueleto/metabolismo , Drosophila , Matriz Extracelular/metabolismo , Feminino , Integrinas/metabolismo , Masculino , Desenvolvimento Muscular/fisiologia , Fosforilação , Ligação Proteica
6.
J Biol Chem ; 293(35): 13496-13508, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30018136

RESUMO

Hedgehog (Hh) signaling plays a key role in the development and maintenance of animal tissues. This signaling is mediated by the atypical G protein-coupled receptor (GPCR) Smoothened (Smo). Smo activation leads to signaling through several well-characterized effectors to activate Hh target gene expression. Recent studies have implicated activation of the heterotrimeric G protein subunit Gαi and the subsequent decrease in cellular cAMP levels in promoting the Hh response in flies and mammals. Although Hh stimulation decreases cAMP levels in some insect cell lines, here using a bioluminescence resonance energy transfer (BRET)-based assay we found that this stimulation had no detectable effect in Drosophila S2-R+ cells. However, we observed an unexpected and significant Gαs-dependent increase in cAMP levels in response to strong Smo activation in Smo-transfected cells. This effect was mediated by Smo's broadly conserved core, and was specifically activated in response to phosphorylation of the Smo C-terminus by GPCR kinase 2 (Gprk2). Genetic analysis of heterotrimeric G protein function in the developing Drosophila wing revealed a positive role for cAMP in the endogenous Hh response. Specifically, we found that mutation or depletion of Gαs diminished low-threshold Hh responses in Drosophila, whereas depletion of Gαi potentiated them (in contrast to previous findings). Our analysis suggested that regulated cAMP production is important for controlling the sensitivity of cellular responses to Hh in Drosophila.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Fosforilação
7.
PLoS Genet ; 13(4): e1006694, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406902

RESUMO

Progressive cystic kidney degeneration underlies diverse renal diseases, including the most common cause of kidney failure, autosomal dominant Polycystic Kidney Disease (PKD). Genetic analyses of patients and animal models have identified several key drivers of this disease. The precise molecular and cellular changes underlying cystogenesis remain, however, elusive. Drosophila mutants lacking the translational regulator Bicaudal C (BicC, the fly ortholog of vertebrate BICC1 implicated in renal cystogenesis) exhibited progressive cystic degeneration of the renal tubules (so called "Malpighian" tubules) and reduced renal function. The BicC protein was shown to bind to Drosophila (d-) myc mRNA in tubules. Elevation of d-Myc protein levels was a cause of tubular degeneration in BicC mutants. Activation of the Target of Rapamycin (TOR) kinase pathway, another common feature of PKD, was found in BicC mutant flies. Rapamycin administration substantially reduced the cystic phenotype in flies. We present new mechanistic insight on BicC function and propose that Drosophila may serve as a genetically tractable model for dissecting the evolutionarily-conserved molecular mechanisms of renal cystogenesis.


Assuntos
Proteínas de Drosophila/genética , Doenças Renais Policísticas/etiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Animais Geneticamente Modificados , Cistos , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Túbulos de Malpighi/patologia , Mutação , Doenças Renais Policísticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima
8.
J Biol Chem ; 290(34): 20960-20971, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26170449

RESUMO

Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Animais , Biocatálise , Técnicas de Cultura de Células , Proliferação de Células , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Transgenes
9.
PLoS Genet ; 10(7): e1004399, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25009998

RESUMO

Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a short membrane-proximal stretch, the sequence of the C-terminus is highly divergent in different phyla, and the evidence suggests that the precise mechanism of Smo activation and transduction of the signal to downstream effectors also differs. To clarify the conserved role of G-protein-coupled receptor kinases (GRKs) in Smo regulation, we mapped four clusters of phosphorylation sites in the membrane-proximal C-terminus of Drosophila Smo that are phosphorylated by Gprk2, one of the two fly GRKs. Phosphorylation at these sites enhances Smo dimerization and increases but is not essential for Smo activity. Three of these clusters overlap with regulatory phosphorylation sites in mouse Smo and are highly conserved throughout the bilaterian lineages, suggesting that they serve a common function. Consistent with this, we find that a C-terminally truncated form of Drosophila Smo consisting of just the highly conserved core, including Gprk2 regulatory sites, can recruit the downstream effector Costal-2 and activate target gene expression, in a Gprk2-dependent manner. These results indicate that GRK phosphorylation in the membrane proximal C-terminus is an evolutionarily ancient mechanism of Smo regulation, and point to a higher degree of similarity in the regulation and signaling mechanisms of bilaterian Smo proteins than has previously been recognized.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Quinase 2 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas de Drosophila/biossíntese , Drosophila melanogaster/crescimento & desenvolvimento , Quinase 2 de Receptor Acoplado a Proteína G/biossíntese , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Camundongos , Fosforilação/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Receptor Smoothened
10.
J Cell Sci ; 127(Pt 5): 954-66, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413170

RESUMO

Phosphoinositides regulate myriad cellular processes, acting as potent signaling molecules in conserved signaling pathways and as organelle gatekeepers that recruit effector proteins to membranes. Phosphoinositide-generating enzymes have been studied extensively in yeast and cultured cells, yet their roles in animal development are not well understood. Here, we analyze Drosophila melanogaster phosphatidylinositol 4-kinase IIIα (PI4KIIIα) during oogenesis. We demonstrate that PI4KIIIα is required for production of plasma membrane PtdIns4P and PtdIns(4,5)P2 and is crucial for actin organization, membrane trafficking and cell polarity. Female germ cells mutant for PI4KIIIα exhibit defects in cortical integrity associated with failure to recruit the cytoskeletal-membrane crosslinker Moesin and the exocyst subunit Sec5. These effects reflect a unique requirement for PI4KIIIα, as egg chambers from flies mutant for either of the other Drosophila PI4Ks, fwd or PI4KII, show Golgi but not plasma membrane phenotypes. Thus, PI4KIIIα is a vital regulator of a functionally distinct pool of PtdIns4P that is essential for PtdIns(4,5)P2-dependent processes in Drosophila development.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Oogênese , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proteínas de Drosophila/metabolismo , Exocitose , Feminino , Genes Letais , Genitália Feminina/citologia , Masculino , Proteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor , Oócitos/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/metabolismo , Transporte Proteico
11.
Fly (Austin) ; 6(3): 135-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22653052

RESUMO

Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Quinases de Receptores Acoplados a Proteína G/fisiologia , Proteínas Hedgehog/fisiologia , Modelos Biológicos , Animais , AMP Cíclico/genética , AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Quinases de Receptores Acoplados a Proteína G/genética , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Transdução de Sinais
12.
Development ; 139(1): 85-94, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096079

RESUMO

G-protein-coupled receptor kinases (GRKs) play a conserved role in Hedgehog (Hh) signaling. In several systems, GRKs are required for efficient Hh target gene expression. Their principal target appears to be Smoothened (Smo), the intracellular signal-generating component of the pathway and a member of the G-protein-coupled receptor (GPCR) protein family. In Drosophila, a GRK called Gprk2 is needed for internalization and downregulation of activated Smo, consistent with the typical role of these kinases in negatively regulating GPCRs. However, Hh target gene activation is strongly impaired in gprk2 mutant flies, indicating that Gprk2 must also positively regulate Hh signaling at some level. To investigate its function in signaling, we analyzed several different readouts of Hh pathway activity in animals or cells lacking Gprk2. Surprisingly, although target gene expression was impaired, Smo-dependent activation of downstream components of the signaling pathway was increased in the absence of Gprk2. This suggests that Gprk2 does indeed play a role in terminating Smo signaling. However, loss of Gprk2 resulted in a decrease in cellular cAMP concentrations to a level that was limiting for Hh target gene activation. Normal expression of target genes was restored in gprk2 mutants by stimulating cAMP production or activating the cAMP-dependent Protein kinase A (Pka). Our results suggest that direct regulation of Smo by Gprk2 is not absolutely required for Hh target gene expression. Gprk2 is important for normal cAMP regulation, and thus has an indirect effect on the activity of Pka-regulated components of the Hh pathway, including Smo itself.


Assuntos
AMP Cíclico/metabolismo , Drosophila melanogaster/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Ácidos Graxos Insaturados , Plasmídeos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened , Ativação Transcricional/fisiologia
13.
Mol Biol Cell ; 21(16): 2869-79, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20573980

RESUMO

Dynamic regulation of cytoskeletal contractility through phosphorylation of the nonmuscle Myosin-II regulatory light chain (MRLC) provides an essential source of tension for shaping epithelial tissues. Rho GTPase and its effector kinase ROCK have been implicated in regulating MRLC phosphorylation in vivo, but evidence suggests that other mechanisms must be involved. Here, we report the identification of a single Drosophila homologue of the Death-associated protein kinase (DAPK) family, called Drak, as a regulator of MRLC phosphorylation. Based on analysis of null mutants, we find that Drak broadly promotes proper morphogenesis of epithelial tissues during development. Drak activity is largely redundant with that of the Drosophila ROCK orthologue, Rok, such that it is essential only when Rok levels are reduced. We demonstrate that these two kinases synergistically promote phosphorylation of Spaghetti squash (Sqh), the Drosophila MRLC orthologue, in vivo. The lethality of drak/rok mutants can be rescued by restoring Sqh activity, indicating that Sqh is the critical common effector of these two kinases. These results provide the first evidence that DAPK family kinases regulate actin dynamics in vivo and identify Drak as a novel component of the signaling networks that shape epithelial tissues.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas de Drosophila/genética , Epitélio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/genética , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Northern Blotting , Western Blotting , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Proteínas Quinases Associadas com Morte Celular , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Morfogênese/genética , Mutação , Miosina Tipo II/metabolismo , Fosforilação , Filogenia , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Quinases Associadas a rho/metabolismo
14.
Dev Biol ; 337(1): 99-109, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19850026

RESUMO

The Hedgehog (Hh) signaling pathway plays a conserved and essential role in regulating development and homeostasis of numerous tissues. Cytoplasmic signaling is initiated by Smoothened (Smo), a G-protein-coupled receptor (GPCR) family member, whose levels and activity are regulated by the Hh receptor Patched (Ptc). In response to Hh binding to Ptc, Ptc-mediated repression of Smo is relieved, leading to Smo activation, surface accumulation, and downstream signaling. We find that downregulation of Drosophila Smo protein in Hh-responding imaginal disc cells is dependent on the activity of G-protein-coupled receptor kinase 2 (Gprk2). By analyzing gain- and null loss-of-function phenotypes, we provide evidence that Gprk2 promotes Smo internalization subsequent to its activation, most likely by direct phosphorylation. Ptc-dependent regulation of Smo accumulation is normal in gprk2 mutants, indicating that Gprk2 and Ptc downregulate Smo by different mechanisms. Finally, we show that both Drosophila G-protein-coupled receptor kinase orthologues, Gprk1 and Gprk2, act in a partially redundant manner to promote Hh signaling. Our results suggest that Smo is regulated by distinct Ptc-dependent and Gprk2-dependent trafficking mechanisms in vivo, analogous to constitutive and activity-dependent regulation of GPCRs. G-protein-coupled receptor kinase activity is also important for efficient downstream signaling.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Regulação da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Animais , Arrestinas/fisiologia , Células Cultivadas , Drosophila melanogaster , Receptor Quinase 1 Acoplada a Proteína G/fisiologia , Proteínas Hedgehog/fisiologia , Fosforilação , Receptores de Superfície Celular/fisiologia , Transdução de Sinais , Receptor Smoothened , Temperatura , beta-Arrestinas
15.
Nat Rev Mol Cell Biol ; 5(10): 805-15, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15459661

RESUMO

Cells grow and divide rapidly during embryonic and postnatal development. Net tissue growth reflects the balance between the addition of new cells and the elimination of existing cells by programmed cell death. Cells compete for growth and survival factors to ensure an appropriate balance between the addition and elimination of cells. Elaborate mechanisms ensure that cells do not evade these constraints, and thereby prevent uncontrolled proliferation.


Assuntos
Apoptose/fisiologia , Divisão Celular/fisiologia , Animais , Ciclo Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero , Genes p16 , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Genes Dev ; 18(18): 2243-8, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15371338

RESUMO

The Drosophila Sterile-20 kinase Slik promotes tissue growth during development by stimulating cell proliferation and by preventing apoptosis. Proliferation within an epithelial sheet requires dynamic control of cellular architecture. Epithelial integrity fails in slik mutant imaginal discs. Cells leave the epithelium and undergo apoptosis. The abnormal behavior of slik mutant cells is due to failure to phosphorylate and activate Moesin, which leads to excess Rho1 activity. This is distinct from Slik's effects on cell proliferation, which are mediated by Raf. Thus Slik acts via distinct pathways to coordinate cell proliferation with epithelial cell behavior during tissue growth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Actinas/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Larva , MAP Quinase Quinase Quinases , Proteínas dos Microfilamentos/genética , Microvilosidades/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
17.
PLoS Biol ; 1(2): E35, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14624240

RESUMO

Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into the mechanisms that coordinate cell growth, proliferation, and death during development and that fail to do so in diseases of cell proliferation. We present evidence that the Drosophila Sterile-20 kinase Slik promotes cell proliferation and controls cell survival. At normal levels, Slik provides survival cues that prevent apoptosis. Cells deprived of Slik activity can grow, divide, and differentiate, but have an intrinsic survival defect and undergo apoptosis even under conditions in which they are not competing with normal cells for survival cues. Like some oncogenes, excess Slik activity stimulates cell proliferation, but this is compensated for by increased cell death. Tumor-like tissue overgrowth results when apoptosis is prevented. We present evidence that Slik acts via Raf, but not via the canonical ERK pathway. Activation of Raf can compensate for the lack of Slik and support cell survival, but activation of ERK cannot. We suggest that Slik mediates growth and survival cues to promote cell proliferation and control cell survival during Drosophila development.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Asas de Animais/embriologia , Alelos , Animais , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Drosophila melanogaster , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genótipo , Imunoprecipitação , Proteínas Inibidoras de Apoptose/metabolismo , MAP Quinase Quinase 4/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Mensageiro/metabolismo , Transgenes , Asas de Animais/metabolismo
18.
Cell ; 113(1): 25-36, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12679032

RESUMO

Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide microRNA that promotes tissue growth. bantam expression is temporally and spatially regulated in response to patterning cues. bantam microRNA simultaneously stimulates cell proliferation and prevents apoptosis. We identify the pro-apoptotic gene hid as a target for regulation by bantam miRNA, providing an explanation for bantam's anti-apoptotic activity.


Assuntos
Apoptose/genética , Divisão Celular/genética , Ciclinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , MicroRNAs/genética , Neuropeptídeos/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases/genética , Mapeamento Cromossômico , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Reguladores/genética , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteína Wnt1
19.
Genetics ; 161(4): 1527-37, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12196398

RESUMO

We report here the consequences of mutations of a novel locus, named bantam, whose product is involved in the regulation of growth in Drosophila. bantam mutant animals are smaller than wild type, due to a reduction in cell number but not cell size, and do not have significant disruptions in patterning. Conversely, overexpression of the bantam product using the EP element EP(3)3622 causes overgrowth of wing and eye tissue. Overexpression in clones of cells results in an increased rate of cell proliferation and a matched increase in cellular growth rate, such that the resulting tissue is composed of more cells of a size comparable to wild type. These effects are strikingly similar to those associated with alterations in the activity of the cyclinD-cdk4 complex. However, epistasis and genetic interaction analyses indicate that bantam and cyclinD-cdk4 operate independently. Thus, the bantam locus represents a novel regulator of tissue growth.


Assuntos
Ciclinas/genética , Ciclinas/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Proteínas de Insetos/genética , Mutação , Animais , Ciclina D , Ciclinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , MicroRNAs , Asas de Animais/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA