Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol ; 2011: 503576, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22007212

RESUMO

The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of these compounds are well documented (e.g., arsenic, mercury) and some of them are of relatively low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and genotoxicity of five volatile metal(loid) compounds: trimethylbismuth, dimethylarsenic iodide, trimethylarsine, tetramethyltin, and dimethylmercury. As far as we know, this is the first study investigating the toxicity of volatile metal(loid) compounds in vitro. Our results showed that dimethylmercury was most toxic to all three used cell lines (CHO-9 cells, CaCo, Hep-G2) followed by dimethylarsenic iodide. Tetramethyltin was the least toxic compound; however, the toxicity was also dependend upon the cell type. Human colon cells (CaCo) were most susceptible to the toxicity of the volatile compounds compared to the other cell lines. We conclude from our study that volatile metal(loid) compounds can be toxic to mammalian cells already at very low concentrations but the toxicity depends upon the metal(loid) species and the exposed cell type.

2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(24): 2465-70, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19560985

RESUMO

Two methods for the determination of methyl mercury (MeHg) in whole blood samples based on different mass spectrometric detection techniques are compared. The methods were employed in two studies in which the internal exposure of a group of mercury-exposed workers to total mercury and MeHg was investigated. Blood samples of these workers were analysed for MeHg independently from each other in two laboratories using similar extraction procedures but different detection techniques, viz. coupled GC-EI-MS/ICP-MS and GC-MS using D(3)-MeHg as internal standard. MeHg was detected in all blood samples in concentrations ranging from 0.3 to 9.0 microg/L. Though different detection techniques were employed, the results obtained by the two laboratories were in relatively good agreement.


Assuntos
Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos de Metilmercúrio/sangue , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Humanos
3.
Chem Res Toxicol ; 21(6): 1219-28, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18826176

RESUMO

Bismuth compounds are widely used in industrial processes and products. In medicine, bismuth salts have been applied in combination with antibiotics for the treatment of Helicobacter pylori infections, for the prevention of diarrhea, and in radioimmunotherapy. In the environment, bismuth ions can be biotransformed to the volatile bismuth compound trimethylbismuth (Me3Bi) by methanobacteria. Preliminary in-house studies have indicated that bismuth ions are methylated in the human colon by intestinal microflora following ingestion of bismuth-containing salts. Information concerning cyto- and genotoxicity of these biomethylated products is limited. In the present study, we investigated the cellular uptake of an organic bismuth compound [monomethylbismuth(III), MeBi(III)] and two other bismuth compounds [bismuth citrate (Bi-Cit) and bismuth glutathione (Bi-GS)] in human hepatocytes, lymphocytes, and erythrocytes using ICP-MS. We also analyzed the cyto- and genotoxic effects of these compounds to investigate their toxic potential. Our results show that the methylbismuth compound was better taken up by the cells than Bi-Cit and Bi-GS. All intracellularly detected bismuth compounds were located in the cytosol of the cells. MeBi(III) was best taken up by erythrocytes (36%), followed by lymphocytes (17%) and hepatocytes (0.04%). Erythrocytes and hepatocytes were more susceptible to MeBi(III) exposure than lymphocytes. Cytotoxic effects of MeBi(III) were detectable in erythrocytes at concentrations >4 microM, in hepatocytes at >130 microM, and in lymphocytes at >430 microM after 24 h of exposure. Cytotoxic effects for Bi-Cit and Bi-GS were much lower or not detectable in the used cell lines up to a tested concentration of 500 microM. Exposure of lymphocytes to MeBi(III) (250 microM for 1 h and 25 microM/50 microM for 24 h) resulted in significantly increased frequencies of chromosomal aberrations (CA) and sister chromatid exchanges (SCE), whereas Bi-Cit and Bi-GS induced neither CA nor SCE. Our study also showed an intracellular production of free radicals caused by MeBi(III) in hepatocytes but not in lymphocytes. These data suggest that biomethylation of bismuth ions by the intestinal microflora of the human colon leads to an increase in the toxicity of the primary bismuth salt.


Assuntos
Bismuto/química , Bismuto/toxicidade , Citotoxinas/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Bismuto/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Gasosa , Aberrações Cromossômicas/induzido quimicamente , Citratos/química , Eritrócitos/metabolismo , Glutationa/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Linfócitos/metabolismo , Metilação , Estrutura Molecular , Mutagênicos/química , Mutagênicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA