Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Phys Chem B ; 128(16): 3904-3909, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38613503

RESUMO

Recently, zwitterions have been proposed as novel cryoprotectants. However, some cells are difficult to cryopreserve using aqueous zwitterion solutions alone. We investigated here the reason for cell damage in such cells, and it was the osmotic pressure after freeze concentration. Furthermore, the addition of dimethyl sulfoxide (DMSO) has been reported to improve the cryoprotective effect in such cells: the zwitterion/DMSO aqueous solution shows a higher cryoprotective effect than the commercial cryoprotectant. This study also clarified the mechanisms underlying the improvement in a cryoprotective effect. The addition of cell-permeable DMSO alleviated the osmotic pressure after the freeze concentration. This alleviation was also found to be a key factor for cryopreserving cell spheroids, while there has been no insight into this phenomenon.


Assuntos
Criopreservação , Crioprotetores , Dimetil Sulfóxido , Pressão Osmótica , Dimetil Sulfóxido/química , Dimetil Sulfóxido/farmacologia , Crioprotetores/química , Crioprotetores/farmacologia , Pressão Osmótica/efeitos dos fármacos , Humanos , Soluções , Sobrevivência Celular/efeitos dos fármacos
2.
J Neurooncol ; 168(1): 91-97, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598087

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) is a tumor cell-selective particle-radiation therapy. In BNCT, administered p-boronophenylalanine (BPA) is selectively taken up by tumor cells, and the tumor is irradiated with thermal neutrons. High-LET α-particles and recoil 7Li, which have a path length of 5-9 µm, are generated by the capture reaction between 10B and thermal neutrons and selectively kill tumor cells that have uptaken 10B. Although BNCT has prolonged the survival time of malignant glioma patients, recurrences are still to be resolved. miRNAs, that are encapsulated in small extracellular vesicles (sEVs) in body fluids and exist stably may serve critical role in recurrence. In this study, we comprehensively investigated microRNAs (miRNAs) in sEVs released from post-BNCT glioblastoma cells. METHOD: Glioblastoma U87 MG cells were treated with 25 ppm of BPA in the culture media and irradiated with thermal neutrons. After irradiation, they were plated into dishes and cultured for 3 days in the 5% CO2 incubator. Then, sEVs released into the medium were collected by column chromatography, and miRNAs in sEVs were comprehensively investigated using microarrays. RESULT: An increase in 20 individual miRNAs (ratio > 2) and a decrease in 2 individual miRNAs (ratio < 0.5) were detected in BNCT cells compared with non-irradiated cells. Among detected miRNAs, 20 miRNAs were associated with worse prognosis of glioma in Kaplan Meier Survival Analysis of overall survival in TCGA. CONCLUSION: These miRNA after BNCT may proceed tumors, modulate radiation resistance, or inhibit invasion and affect the prognosis of glioma.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , MicroRNAs , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos da radiação , MicroRNAs/metabolismo , MicroRNAs/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação
3.
Macromol Biosci ; : e2300499, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329319

RESUMO

Cryopreservation techniques are valuable for the preservation of genetic properties in cells, and the development of this technology contributes to various fields. In a previous study, an isotonic freezing medium composed of poly(zwitterion) (polyZI) has been reported, which alleviates osmotic shock, unlike typical hypertonic freezing media. In this study, the primitive freezing medium composed of emerging polyZI is optimized. Imidazolium/carboxylate-type polyZI (VimC3 C) is the optimal chemical structure. The molecular weight and degree of ion substitution (DSion ) are not significant factors. There is an impediment with the primitive polyZI freezing media. While the polyZI forms a matrix around the cell membrane to protect cells, the matrix is difficult to remove after thawing, resulting in low cell proliferation. Unexpectedly, increasing the poly(VimC3 C) concentration from 10% to 20% (w/v) improves cell proliferation. The optimized freezing medium, 20% (w/v) poly(VimC3 C)_DSion(100%) /1% (w/v) NaCl aqueous solution, exhibited a better cryoprotective effect.

4.
Dev Cell ; 59(5): 579-594.e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309264

RESUMO

There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Humanos , Ácido Glutâmico , Astrócitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores ErbB , Microambiente Tumoral
5.
Commun Chem ; 6(1): 260, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030701

RESUMO

During the long-term storage of cells, it is necessary to inhibit ice crystal formation by adding cryoprotectants. Non-cell-permeable cryoprotectants have high osmotic pressure which dehydrates cells, indirectly suppressing intracellular ice crystal formation. However, the high osmotic pressure and dehydration often damage cells. Emerging polymer-type non-cell-permeable cryoprotectants form matrices surrounding cells. These matrices inhibit the influx of extracellular ice nuclei that trigger intracellular ice crystal formation. However, these polymer-type cryoprotectants also require high osmotic pressure to exert an effective cryoprotecting effect. In this study, we designed a poly(zwitterion) (polyZI) that forms firm matrices around cells based on their high affinity to cell membranes. The polyZI successfully cryopreserved freeze-vulnerable cells under isotonic conditions. These matrices also controlled osmotic pressure by adsorbing and desorbing NaCl depending on the temperature, which is a suitable feature for isotonic cryopreservation. Although cell proliferation was delayed by the cellular matrices, washing with a sucrose solution improved proliferation.

6.
Sci Rep ; 13(1): 37, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593263

RESUMO

Cryopreservation of tissues is a tough challenge. Cryopreservation is categorized into slow-freezing and vitrification, and vitrification has recently been recognized as a suitable method for tissue cryopreservation. On the contrary, some researchers have reported that slow-freezing also has potential for tissue cryopreservation. Although conventional cryoprotectants have been studied well, some novel ones may efficiently cryopreserve tissues via slow-freezing. In this study, we used aqueous solutions of an emerging cryoprotectant, an artificial zwitterion supplemented with a conventional cryoprotectant, dimethyl sulfoxide (DMSO), for cell spheroids. The zwitterion/DMSO aqueous solutions produced a better cryoprotective effect on cell spheroids, which are the smallest units of tissues, compared to that of a commercial cryoprotectant. Cryopreservation with the zwitterion/DMSO solutions not only exhibited better cell recovery but also maintained the functions of the spheroids effectively. The optimized composition of the solution was 10 wt% zwitterion, 15 wt% DMSO, and 75 wt% water. The zwitterion/DMSO solution gave a higher number of living cells for the cryopreservation of mouse tumor tissues than a commercial cryoprotectant. The zwitterion/DMSO solution was also able to cryopreserve human tumor tissue, a patient-derived xenograft.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Humanos , Camundongos , Animais , Crioprotetores/farmacologia , Congelamento , Dimetil Sulfóxido/farmacologia , Criopreservação/métodos , Vitrificação
7.
BMC Cancer ; 23(1): 85, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698109

RESUMO

BACKGROUND: While molecular targeted drugs and other therapies are being developed for many tumors, pancreatic cancer is still considered to be the malignant tumor with the worst prognosis. We started this study to identify prognostic genes and therapeutic targets of pancreatic cancer. METHODS: To comprehensively identify prognostic genes in pancreatic cancer, we investigated the correlation between gene expression and cancer-specific prognosis using transcriptome and clinical information datasets from The Cancer Genome Atlas (TCGA). In addition, we examined the effects of the suppression of candidate prognostic genes in pancreatic cancer cell lines. RESULT: We found that patients with high expression levels of MYEOV, a primate-specific gene with unknown function, had significantly shorter disease-specific survival times than those with low expression levels. Cox proportional hazards analysis revealed that high expression of MYEOV was significantly associated with poor survival and was an independent prognostic factor for disease-specific survival in pancreatic cancer patients. Analysis of multiple cancer samples revealed that the MYEOV promoter region is methylated in noncancer tissues but is demethylated in tumors, causing MYEOV overexpression in tumors. Notably, the knockdown of MYEOV suppressed the expression of MTHFD2 and other folate metabolism-related enzyme genes required for the synthesis of amino acids and nucleic acids and also restored the expression of c-Myc and mTORC1 repressors. CONCLUSION: There is a significant correlation between elevated MYEOV expression and poor disease-specific survival in pancreatic cancer patients. MYEOV enhances the activation of several oncogenic pathways, resulting in the induction of pancreatic cancer cell proliferation. Overall, MYEOV acts as an oncogene in pancreatic cancer. Furthermore, MYEOV may be a prognostic biomarker and serve as an 'actionable' therapeutic target for pancreatic cancers.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas , Linhagem Celular Tumoral , Desmetilação , Ácido Fólico/metabolismo , Regulação Neoplásica da Expressão Gênica , Processos Neoplásicos , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
8.
Sci Rep ; 11(1): 9770, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963207

RESUMO

Trimethylglycine (TMG) is a cheap, natural, and highly biocompatible compound. Therefore, it has been used in the fields of food and life sciences, but the application of solid TMG is limited to utilisation as an "additive". In the present study, we focussed on the high solubility of TMG in water, derived from the aprotic zwitterionic structure, and proposed TMG as the chemical accounting for a major portion of the aqueous solution (e.g., 50 wt%). High loading of TMG shifted the properties of water and enabled the dissolution of poorly water-soluble cisplatin, an anticancer agent, at high concentration (solubility of cisplatin: 0.15 wt% in water vs 1.7 wt% in TMG aqueous solution). For hepatic arterial infusion, this can reduce the amount of cisplatin administered from 40 to 4 mL. It enables simple injection using a syringe, without the need for catheters and automatic pumps, leading to critical alleviation of the risk to patients. Furthermore, we produced a dry powder from a cisplatin-containing TMG aqueous solution via freeze-drying. Powders can be conveniently stored and transported. Furthermore, cisplatin is often used as a mixture with other drugs, and cisplatin aqueous solutions are not preferred as they dilute the other drugs.

9.
Commun Chem ; 4(1): 151, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697848

RESUMO

Cryopreservation of cells is necessary for long periods of storage. However, some cell lines cannot be efficiently cryopreserved, even when optimized commercial cryoprotectants are employed. Previously, we found that a low-toxic synthetic zwitterion aqueous solution enabled good cryopreservation. However, this zwitterion solution could not cryopreserve some cells, such as human kidney BOSC cells, with good efficiency. Therefore, details of the cryoprotective effect of the zwitterions and optimization based on its mechanisms are required. Herein, we synthesized 18 zwitterion species and assessed the effects of the physical properties of water/zwitterion mixtures. Non-cell-permeable zwitterions can inhibit ice crystal formation extracellularly via direct interaction with water and intracellularly via dehydration of cells. However, cells that could not be cryopreserved by zwitterions were insufficiently dehydrated in the zwitterion solution. Dimethyl sulfoxide (DMSO) was combined as a cell-permeable cryoprotectant to compensate for the shortcomings of non-cell-permeable zwitterions. The water/zwitterion/DMSO (90/10/15, v/w/w) could cryopreserve different cells, for example freezing-vulnerable K562 and OVMANA cells; yielding ~1.8-fold cell viability compared to the case using a commercial cryoprotectant. Furthermore, molecular dynamics simulation indicated that the zwitterions protected the cell membrane from the collapse induced by DMSO.

10.
Cancers (Basel) ; 12(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086625

RESUMO

As glioma stem cells are chemo- and radio-resistant, they could be the origins of recurrent malignant glioma. Boron neutron capture therapy (BNCT) is a tumor-selective particle radiation therapy. 10B(n,α)7Li capture reaction produces alpha particles whose short paths (5-9 µm) lead to selective killing of tumor cells. P-boronophenylalanine (BPA) is a chemical compound used in clinical trials for BNCT. Here, we used mass cytometry (Cytof) to investigate whether glioma stem-like cells (GSLCs) take up BPA or not. We used GSLCs, and cells differentiated from GSLCs (DCs) by fetal bovine serum. After exposure to BPA for 24 h at 25 ppm in 5% CO2 incubator, we immune-stained them with twenty stem cell markers, anti-Ki-67, anti-BPA and anti-CD98 (heterodimer that forms the large BPA transporter) antibodies and analyzed them with Cytof. The percentage of BPA+ or CD98+ cells with stem cell markers (Oct3/4, Nestin, SOX2, Musashi-1, PDGFRα, Notch2, Nanog, STAT3 and C-myc, among others) was 2-4 times larger among GSLCs than among DCs. Analyses of in vivo orthotopic tumor also indicated that 100% of SOX2+ or Nestin+ GSLCs were BPA+, whereas only 36.9% of glial fibrillary acidic protein (GFAP)+ DCs were BPA+. Therefore, GSLCs may take up BPA and could be targeted by BNCT.

11.
iScience ; 23(9): 101480, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32891059

RESUMO

Brain metastasis is an ineffective process, and many cancer cells enter into an indolent state following extravasation in the brain. Single cell RNA sequencing of melanoma brain metastases reveals that non-proliferating brain metastatic melanoma cells exhibit a pattern of gene expression associated with inhibition of DNA methyltransferase 1 (DNMT1). The brain microenvironment, specifically the combination of reactive astrocytes and mechanically soft surroundings, suppressed DNMT1 expression in various cancer types and caused cell cycle delay. Somewhat unexpectedly, we find that DNMT1 suppression not only induces cell cycle delay but also activates pro-survival signals in brain metastatic cancer cells, including L1CAM and CRYAB. Our results demonstrate that transcriptional changes triggered by DNMT1 suppression is a key step for cancer cells to survive in the brain microenvironment and that they also restrict cancer cell proliferation. The dual consequences of DNMT1 suppression can explain the persistence of indolent cancer cells in the brain microenvironment.

12.
Commun Chem ; 3(1): 163, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36703409

RESUMO

Dimethyl sulfoxide (DMSO) is widely used as a solvent in the life sciences, however, it is somewhat toxic and affects cell behaviours in a range of ways. Here, we propose a zwitterionic liquid (ZIL), a zwitterion-type ionic liquid containing histidine-like module, as a new alternative to DMSO. ZIL is not cell permeable, less toxic to cells and tissues, and has great potential as a vehicle for various hydrophobic drugs. Notably, ZIL can serve as a solvent for stock solutions of platinating agents, whose anticancer effects are completely abolished by dissolution in DMSO. Furthermore, ZIL possesses suitable affinity to the plasma membrane and acts as a cryoprotectant. Our results suggest that ZIL is a potent, multifunctional and biocompatible solvent that compensates for many shortcomings of DMSO.

13.
Mol Cancer Ther ; 18(5): 947-956, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926637

RESUMO

Anaplastic thyroid carcinoma (ATC) is a rare but aggressive undifferentiated tumor that frequently metastasizes to the brain. The multiple kinase inhibitor lenvatinib and sorafenib have been approved to treat unresectable differentiated thyroid cancer, and lenvatinib has been approved in Japan to treat ATC. This study compared the effects of lenvatinib and sorafenib in mouse models of central nervous system metastases of ATC. Immunodeficient mice were inoculated with ATC cells, and the effects of lenvatinib and sorafenib were evaluated in subcutaneous- and brain metastasis-mimicking models. Drug distribution was evaluated by imaging tandem mass spectrometry (ITMS). Neither lenvatinib nor sorafenib affected the viability of ATC cell lines, whereas both inhibited VEGF secretion by ATC cells. In the subcutaneous tumor model, both lenvatinib and sorafenib inhibited growth and were associated with reduced tumor microvessel density. In the brain metastasis-mimicking model, lenvatinib, but not sorafenib, inhibited the growth of ATC cells and reduced microvessel density in brain lesions. ITMS showed that lenvatinib was well-distributed in both subcutaneous and brain lesions, whereas the distribution of sorafenib was lower in brain than in subcutaneous lesions. These results demonstrate that lenvatinib is well-distributed in mouse models of ATC, and inhibited the growth of ATC brain lesions predominantly by inhibiting angiogenesis, suggesting that lenvatinib is highly potent against ATC brain metastases.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Sorafenibe/farmacologia , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia
14.
Int J Mol Sci ; 20(3)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764494

RESUMO

Extracellular signal-regulated kinase (ERK) is a major downstream factor of the EGFR-RAS-RAF signalling pathway, and thus the role of ERK in cell growth has been widely examined. The development of biosensors based on fluorescent proteins has enabled us to measure ERK activities in living cells, both after growth factor stimulation and in its absence. Long-term imaging unexpectedly revealed the oscillative activation of ERK in an epithelial sheet or a cyst in vitro. Studies using transgenic mice expressing the ERK biosensor have revealed inhomogeneous ERK activities among various cell species. In vivo Förster (or fluorescence) resonance energy transfer (FRET) imaging shed light on a novel role of ERK in cell migration. Neutrophils and epithelial cells in various organs such as intestine, skin, lung and bladder showed spatio-temporally different cell dynamics and ERK activities. Experiments using inhibitors confirmed that ERK activities are required for various pathological responses, including epithelial repair after injuries, inflammation, and niche formation of cancer metastasis. In conclusion, biosensors for ERK will be powerful and valuable tools to investigate the roles of ERK in situ.


Assuntos
Técnicas Biossensoriais/métodos , Movimento Celular , MAP Quinases Reguladas por Sinal Extracelular/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Técnicas Biossensoriais/instrumentação , Sobrevivência Celular , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Humanos , Imagem Óptica/instrumentação
15.
Cancer Sci ; 109(12): 4045-4055, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30281889

RESUMO

At the invasive front of adenocarcinomas, single cells and multicellular structures exist; the latter include glands and cell clusters, such as tumor buddings and poorly differentiated clusters. Recent reports suggest the importance of collective cell migration in metastasis; however, it is technically difficult to observe the movement of multicellular structures in vivo. We utilized MDCK cells as a model for epithelial cells and established a method to quantify their motility in 3D structures in vitro. A single MDCK cell grows as a cell cluster in the gel and later proliferates and forms a cyst. Active K-RAS expression induced rotation of both the cell clusters and the cysts. The rotation speed of cell clusters was 4 times higher than that of cysts. The screening of inhibitors for their effects on cell clusters and cysts revealed that cyclin B1 and ß-catenin were the key molecules for their rotation, respectively. Regulators for cyst rotation, such as vorinostat and ß-catenin, were not effective for inducing cell cluster rotation. These results indicate that the signaling pathways of cell dynamics are different between cell clusters and cysts. As cell clusters are related to lymph node involvement and the prognosis of various carcinomas, our in vitro quantitative system may be useful for the screening of drugs to prevent lymphatic invasion.


Assuntos
Ciclina B1/metabolismo , Células Epiteliais/citologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , beta Catenina/metabolismo , Animais , Movimento Celular , Proliferação de Células , Cães , Células Epiteliais/metabolismo , Células Madin Darby de Rim Canino , Modelos Biológicos , Transdução de Sinais , Análise de Célula Única
16.
Artigo em Inglês | MEDLINE | ID: mdl-28213438

RESUMO

Cancer evolution plays a key role in both the development of tumors and their response to therapy. Like all evolutionary processes, tumor evolution is shaped by the environment. In tumors, this consists of a complex mixture of nontransformed cell types and extracellular matrix. Chemotherapy or radiotherapy imposes further strong selective pressures on cancer cells during cancer treatment. Here, we review how different components of the tumor microenvironment can modulate the response to chemo- and radiotherapy. We further describe how therapeutic strategies directly alter the composition, or function, of the tumor microenvironment, thereby further altering the selective pressures to which cancer cells are exposed. Last, we explore the consequences of these interactions for therapy outcomes and how to exploit our increasing understanding of the tumor microenvironment for therapeutic benefit.


Assuntos
Matriz Extracelular , Neoplasias/terapia , Microambiente Tumoral , Tratamento Farmacológico , Humanos , Neoplasias/patologia , Radioterapia
17.
Biophys J ; 111(6): 1103-1111, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27475975

RESUMO

Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/instrumentação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia/instrumentação , Animais , Humanos , Imageamento Tridimensional
18.
Pigment Cell Melanoma Res ; 29(1): 92-100, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26414886

RESUMO

Here, we retrospectively review imaging of 68 consecutive unselected patients with BRAF V600-mutant metastatic melanoma for organ-specific response and progression on vemurafenib. Complete or partial responses were less often seen in the central nervous system (CNS) (36%) and bone (16%) compared to lung (89%), subcutaneous (83%), spleen (71%), liver (85%) and lymph nodes/soft tissue (83%), P < 0.001. CNS was also the most common site of progression. Based on this, we tested in vitro the efficacy of the BRAF inhibitors PLX4720 and dabrafenib in the presence of cerebrospinal fluid (CSF). Exogenous CSF dramatically reduced cell death in response to both BRAF inhibitors. Effective cell killing was restored by co-administration of a PI-3 kinase inhibitor. We conclude that the efficacy of vemurafenib is variable in different organs with CNS being particularly prone to resistance. Extrinsic factors, such as ERK- and PI3K-activating factors in CSF, may mediate BRAF inhibitor resistance in the CNS.


Assuntos
Neoplasias do Sistema Nervoso Central/secundário , Resistencia a Medicamentos Antineoplásicos , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Adolescente , Adulto , Idoso , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/enzimologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Indóis/farmacologia , Masculino , Melanoma/líquido cefalorraquidiano , Pessoa de Meia-Idade , Especificidade de Órgãos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sulfonamidas/farmacologia , Adulto Jovem
19.
Cancer Cell ; 27(4): 574-88, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25873177

RESUMO

Intravital imaging of BRAF-mutant melanoma cells containing an ERK/MAPK biosensor reveals how the tumor microenvironment affects response to BRAF inhibition by PLX4720. Initially, melanoma cells respond to PLX4720, but rapid reactivation of ERK/MAPK is observed in areas of high stromal density. This is linked to "paradoxical" activation of melanoma-associated fibroblasts by PLX4720 and the promotion of matrix production and remodeling leading to elevated integrin ß1/FAK/Src signaling in melanoma cells. Fibronectin-rich matrices with 3-12 kPa elastic modulus are sufficient to provide PLX4720 tolerance. Co-inhibition of BRAF and FAK abolished ERK reactivation and led to more effective control of BRAF-mutant melanoma. We propose that paradoxically activated MAFs provide a "safe haven" for melanoma cells to tolerate BRAF inhibition.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
20.
Nat Cell Biol ; 16(7): 621-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981633

RESUMO

Collective cell migration is characterized by the maintenance of intercellular contacts during cell movement. The maintenance of N-cadherin-based junctions during collective migration is now shown to be facilitated by their treadmilling from the cell front to the rear, followed by N-cadherin endocytosis and recycling to the leading edge.


Assuntos
Junções Aderentes/metabolismo , Movimento Celular , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA