Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2396276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39315332

RESUMO

Nitrides and oxynitrides isostructural to α-Si3N4 (M-α-SiAlON, M = Sr, Ca, Li) possess superb thermally stable photoluminescence (PL) properties, making them reliable phosphors for high-power solid-state lighting. However, the synthesis of phase-pure Sr-α-SiAlON still remains a great challenge and has only been reported for Sr below 1.35 at.% as the large size of Sr2+ ions tends to destabilize the α-SiAlON structure. Here, we succeeded to synthesize the single-phase powders of a unique 'Sr-rich' polytypoid α-SiAlON (Sr3Si24Al6N40:Eu2+) phosphor with three distinctive Sr/Eu luminescence sites using a solid-state remixing-reannealing process. The Sr content of this polytypoid structure exceeds those of a few previously reported structures by over 200%. The phase purity, composition, structure, and PL properties of this phosphor were investigated. A single phase can be obtained by firing the stoichiometric mixtures of all-nitride precursors at 2050°C under a 0.92 MPa N2 atmosphere. The Sr3Si24Al6N40:Eu2+ shows an intense orange-yellow emission, with the emission maximum of 590 nm and internal/external quantum efficiency of 66%/52% under 400 nm excitation. It also has a quite small thermal quenching, maintaining 93% emission intensity at 150°C. In comparison to Ca-α-SiAlON:Eu2+, this Sr counterpart shows superior quantum efficiency and thermal stability, enabling it to be an interesting orange-yellow down-conversion luminescent material for white LEDs. The experimental confirmation of the existence of such 'Sr-rich' SiAlON systems, in a single-phase powder form, paves the way for the design and synthesis of novel 'Sr-rich' SiAlON-based phosphor powders with unparalleled properties.


A distinctive orange-yellow-emitting 'Sr-rich' α-SiAlON-based phosphor with quite small thermal quenching (93% PL intensity at 150°C) that can surprisingly be synthesized in a single-phase powder form for white LEDs.

2.
Phys Chem Chem Phys ; 25(36): 24214-24233, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37691583

RESUMO

Stable and efficient phosphors are highly important for light-emitting diodes (LEDs) with respect to their application in solid-state lighting, instead of conventional lamps for general lighting. However, some problems, like low stability, low photoluminescence (PL) efficiency, and serious thermal degradation, are commonly encountered in phosphors, limiting their applications in LEDs. Surface modifications for some phosphors commonly used in LED lighting, including fluoride, sulphide, silicate, oxide, nitride, and oxynitride phosphors, are presented in this review. By forming a protective surface layer, the stabilities against moisture and high temperature of fluoride- and sulphide-based phosphors were strengthened; by coating inorganic and organic materials around the particle surface, the PL efficiencies of silicate- and oxide-based phosphors were improved; by passivation treatment upon the phosphor surface, the thermal degradation of nitride- and oxynitride-based phosphors was reduced. Various technologies for surface modification are described in detail; moreover, the mechanisms of stability strengthening, PL efficiency improvement, and thermal degradation reduction are explained. In addition, embedding of phosphors in inorganic glass matrix, especially for quantum dots, is also introduced as an effective method to improve phosphor stability for LED applications. Finally, future developments of surface modification of phosphors are proposed.

3.
J Phys Chem Lett ; 13(51): 11878-11882, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36520951

RESUMO

Narrow-band emitting phosphors are required to improve the performance of phosphor-converted light-emitting diodes. Here, we found a new narrow-band emitting phosphor Na2Cs2Sr(B9O15)2:Eu2+ using the local structure similarity with a known narrow-band emitting phosphor. In a 2D scatter plot of the structural similarity between the local structures, the Sr site in Na2Cs2Sr(B9O15)2 was located near the Ba site of the known narrow-band emitting sulfate phosphor BaSO4:Eu2+ with a distorted local structure. We synthesized Na2Cs2Sr(B9O15)2:Eu2+ and characterized the luminescence properties by microspectroscopy. Na2Cs2Sr(B9O15)2:Eu2+ showed a violet luminescence peaked at 417 nm, and the full-width at half-maximum was as narrow as 26 nm (1497 cm-1).

4.
Phys Chem Chem Phys ; 24(7): 4348-4357, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35108722

RESUMO

The valence state of Eu ions doped in inorganic compounds is easily influenced by the synthesizing conditions. In this study, X-ray absorption spectroscopy revealed that almost half of Eu ions incorporated in the YSiO2N host were reduced into the divalent state through the sintering process at 1600 °C under a N2 gas atmosphere without any annealing processes. The prepared Eu2+/3+-doped YSiO2N sample showed anomalous deep-red to near-infrared luminescence below 300 K under violet light illumination, whose luminescent properties are discussed through detailed spectroscopic analyses. In the photoluminescence spectra at 4 K, the broad luminescence band ranging from 550 to 1100 nm with a large Stokes shift of 5677 cm-1 was observed, assigned to the recombination emission related to the Eu2+-trapped exciton state. The temperature dependence of luminescence lifetime suggests that the thermal quenching of Eu2+-trapped exciton luminescence takes place through complicated processes in addition to thermal ionization. The energy diagrams based on the spectroscopic results indicate that Eu2+-trapped exciton luminescence in the YSiO2N:Eu2+/3+ sample was observed because all the Eu2+: 5d excited levels are degenerated with the host conduction band, and the relatively stable Eu2+-trapped exciton state in the Y3+ sites is formed just below the conduction band bottom. A comprehensive discussion on the deep-red to near-infrared luminescence in the YSiO2N host could give new insights into the mechanism of Eu2+-trapped exciton luminescence in Y3+ sites, which has potential in near-infrared emitting devices.

5.
J Chem Phys ; 154(22): 224117, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241209

RESUMO

Discovery of new compounds from wide chemical space is attractive for materials researchers. However, theoretical prediction and validation experiments have not been systematically integrated. Here, we demonstrate that a new combined approach is powerful in significantly accelerating the discovery rate of new compounds, which should be useful for exploration of a wide chemical space in general. A recommender system for chemically relevant composition is constructed by machine learning of Inorganic Crystal Structure Database using chemical compositional descriptors. Synthesis and identification experiments are made at the chemical compositions with high recommendation scores by the single-particle diagnosis method. Two new compounds, La4Si3AlN9 and La26Si41N80O, and two new variants (isomorphic substitutions) of known compounds, La7Si6N15 and La4Si5N10O, are successfully discovered. Finally, density functional theory calculations are conducted for La4Si3AlN9 to confirm the energetic and dynamical stability and to reveal its atomic arrangement.

6.
Sci Technol Adv Mater ; 22(1): 185-193, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33967628

RESUMO

To efficiently search for novel phosphors, we propose a dissimilarity measure of local structure using the Wasserstein distance. This simple and versatile method provides the quantitative dissimilarity of a local structure around a center ion. To calculate the Wasserstein distance, the local structures in crystals are numerically represented as a bag of interatomic distances. The Wasserstein distance is calculated for various ideal structures and local structures in known phosphors. The variation of the Wasserstein distance corresponds to the structural variation of the local structures, and the Wasserstein distance can quantitatively explain the dissimilarity of the local structures. The correlation between the Wasserstein distance and the full width at half maximum suggests that candidates for novel narrow-band phosphors can be identified by crystal structures that include local structures with small Wasserstein distances to local structures of known narrow-band phosphors. The quantitative dissimilarity using the Wasserstein distance is useful in the search of novel phosphors and expected to be applied in materials searches in other fields in which local structures play an important role.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 76-84, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831243

RESUMO

Composite crystals SrxLi2+xAl2-xO4:Eu2+ were synthesized and their structures were determined using single-crystal X-ray diffraction. The commensurate structure with a modulation wavevector q = 5c*/6 was analyzed in a conventional manner in 3D space, while a structure model in (3+1)-dimensional superspace was used for the other two crystals with modulation wavevectors slightly differing from 5c*/6. The superstructure of the commensurate phase was described using the space group P4/n and a common superspace group I4/m(00γ)00 was used for the (3+1)D structures of all three crystals. The whole structure of each crystal consists of two substructures. Basis vectors a and b are common, but c is different for the two substructures. The first substructure is a host framework constructed by (Li/Al)O4 tetrahedra sharing edges. A linear connection of cavities is seen to be channel-like, in which Sr ions locate as guest cations forming the second substructure. The crystal of q = 5c*/6 contains five Sr ions per six cavities in a channel. Sr ions are distributed at seven sites, some of which are partially occupied. Statistical disorder of local structure models for the location of Sr ions in the channel was assumed to explain the results. Such a partially disordered character was also seen in the incommensurate phases and properly embodied by a (3+1)D model containing an atomic domain of the Sr ion with occupational modulation. Plots of the occupation factor, interatomic distances and the bond valence sum at each metal site as functions of t (= x4 - q·r) are roughly identical in the three crystals, which are considered as members of the same series of composite crystals.

8.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877634

RESUMO

We prepared four types of Eu2O3- and P2O5-doped Ca2SiO4 phosphors with different phase compositions but identical chemical composition, the chemical formula of which was (Ca1.950Eu3+0.013☐0.037)(Si0.940P0.060)O4 (☐ denotes vacancies in Ca sites). One of the phosphors was composed exclusively of the incommensurate (IC) phase with superspace group Pnma(0ß0)00s and basic unit-cell dimensions of a = 0.68004(2) nm, b = 0.54481(2) nm, and c = 0.93956(3) nm (Z = 4). The crystal structure was made up of four types of ß-Ca2SiO4-related layers with an interlayer. The incommensurate modulation with wavelength of 4.110 × b was induced by the long-range stacking order of these layers. When increasing the relative amount of the IC-phase with respect to the coexisting ß-phase, the red light emission intensity, under excitation at 394 nm, steadily decreased to reach the minimum, at which the specimen was composed exclusively of the IC-phase. The coordination environments of Eu3+ ion in the crystal structures of ß- and IC-phases might be closely related to the photoluminescence intensities of the phosphors.

9.
ACS Appl Mater Interfaces ; 11(32): 29047-29055, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31293162

RESUMO

A new sialon Eu3.60LiSi13.78Al6.03O6.82N22.59 has been discovered via the single-particle diagnosis approach. Its crystal structure (space group P3m1) was solved and refined from single-crystal X-ray diffraction data. It has the interesting feature of two types of disorder at the Eu2 site: positional disorder (Eu2a/Eu2b) and substitutional disorder with (Si/Al)2(O/N). The structure is generalized to the formula A4-mBnC19+2mX29+m (A = Sr, La, Eu, Ce; B = Li; C = Si, Al; X = O, N; 0 ≤ m ≤ 1; 0 ≤ n ≤ 1), of which Sr3.61LiSi14.27Al5.61O6.19N23.25 (Sr-sialon, m = 0.41, n = 1) and La2.85Sr0.76LiSi14.86Al4.93O2.89N26.51 (LaSr-sialon, m = 0.40, n = 1) are two examples that have been obtained as a single-phase powder. Sr-sialon:Eu and LaSr-sialon:Eu both show blue to yellow emission, depending on the Eu concentration, whereas Sr-sialon:1% Ce shows a deep-blue emission band centered at 422 nm with a full width at half-maximum of 80 nm and an internal quantum efficiency of 80% (λex = 355 nm). The latter phosphor has very good thermal stability of both emission intensity and color. A white light-emitting diode (LED) containing the newly discovered Sr-sialon:5% Ce as the blue phosphor component shows excellent color-rendering indices (Ra = 96 and R12 = 97) with a correlated color temperature of 4255 K. This indicates that Sr-sialon:Ce is a highly promising deep-blue phosphor for illumination grade white LEDs.

10.
Inorg Chem ; 58(9): 6155-6160, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013078

RESUMO

We have for the first time clarified the incommensurately modulated crystal structure as well as the photoluminescence properties of Eu2+-activated Ca2SiO4 solid solution, the chemical formula of which is (Ca1.88Eu2+0.01□0.11)(Si0.78P0.22)O4, where □ denotes vacancies in Ca sites with the replacement of Si4+ by P5+. The emission spectrum upon the 335 nm excitation showed a relatively broad band centered at ca. 490 nm and a full width at half-maximum of ca. 80 nm. The crystal structure was made up of the four types of ß-Ca2SiO4-like layers with one type of interlayer. The incommensurate modulation with superspace group Pnma(0 ß 0)00 s was induced by the long-range stacking order of these layers. The modulation wavevector was 0.27404(2) × b*, with the basic unit-cell dimensions being a = 0.68355(2) nm, b = 0.54227(2) nm, and c = 0.93840(3) nm ( Z = 4). The basic structure contained two nonequivalent Ca sites. One site was fully occupied by Ca2+ and free from Eu2+ in the overall incommensurate structure. The occupational modulation at the other site was so significant that the sum of site occupation factors for Ca2+ and Eu2+ as low as 0.5 was seen at the interlayer. This site was too large for accommodation of Ca2+ but was suitable for Eu2+. Thus, the Eu2+ ions would exclusively concentrate at the relevant site, which would cause the emission peak of the incommensurate phase to be shifted to the shorter wavelength ranges as compared with those of the other commensurate phases such as ß and α'L.

11.
ACS Appl Mater Interfaces ; 10(17): 14930-14940, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29637779

RESUMO

As a next-generation high-power lighting technology, laser lighting has attracted great attention in high-luminance applications. However, thermally robust and highly efficient color converters suitable for high-quality laser lighting are scarce. Despite its versatility, the phosphor-in-glass (PiG) has been seldom applied in laser lighting because of its low thermal conductivity. In this work, we develop a unique architecture in which a phosphor-in-glass (PiG) film was directly sintered on a high thermally conductive sapphire substrate coated by one-dimensional photonic crystals. The designed color converter with the composite architecture exhibits a high internal quantum efficiency close to that of the original phosphor powders and an excellent packaging efficiency up to 90%. Furthermore, the PiG film can even be survived under the 11.2 W mm-2 blue laser excitation. Combining blue laser diodes with the YAG-PiG-on-sapphire plate, a uniform white light with a high luminance of 845 Mcd m-2(luminous flux: 1839 lm), luminous efficacy of 210 lm W-1, and correlated color temperature of 6504 K was obtained. A high color rendering index of 74 was attained by adding a robust orange or red phosphor layer to the architecture. These outstanding properties meet the standards of vehicle regulations, enabling the PiG films with the composite architecture to be applied in automotive lighting or other high-power and high-luminance laser lighting.

12.
Chem Rev ; 118(4): 1951-2009, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29392943

RESUMO

Advances in solid state white lighting technologies witness the explosive development of phosphor materials (down-conversion luminescent materials). A large amount of evidence has demonstrated the revolutionary role of the emerging nitride phosphors in producing superior white light-emitting diodes for lighting and display applications. The structural and compositional versatility together with the unique local coordination environments enable nitride materials to have compelling luminescent properties such as abundant emission colors, controllable photoluminescence spectra, high conversion efficiency, and small thermal quenching/degradation. Here, we summarize the state-of-art progress on this novel family of luminescent materials and discuss the topics of materials discovery, crystal chemistry, structure-related luminescence, temperature-dependent luminescence, and spectral tailoring. We also overview different types of nitride phosphors and their applications in solid state lighting, including general illumination, backlighting, and laser-driven lighting. Finally, the challenges and outlooks in this type of promising down-conversion materials are highlighted.

13.
ACS Appl Mater Interfaces ; 10(2): 1854-1864, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29277986

RESUMO

Deep-trap persistent luminescence materials exhibit unique properties of energy storage and controllable photon release under additional stimulation, allowing for both wavelength and intensity multiplexing to realize high-capacity storage in the next-generation information storage system. However, the lack of suitable persistent luminescence materials with deep traps is the bottleneck of such storage technologies. In this study, we successfully developed a series of novel deep-trap persistent luminescence materials in the Ln2+/Ln3+-doped SrSi2O2N2 system (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) by applying the strategy of trap depth engineering. Interestingly, the trap depth can be tailored by selecting different codopants, and it monotonically increases from 0.90 to 1.18 eV in the order of Er, Ho, and Dy. This is well explained by the energy levels indicated in the host-referred binding energy scheme. The orange-red-emitting SrSi2O2N2:Yb,Dy and green-emitting SrSi2O2N2:Eu,Dy phosphors are demonstrated to be good candidates of information storage materials, which are attributed to their deep traps, narrow thermoluminescence glow bands, high emission efficiency, and excellent chemical stability. This work not only validates the suitability of deep-trap persistent luminescence materials in the information storage applications, but also broadens the avenue to explore such kinds of new materials for applications in anticounterfeiting and advanced displays.

14.
ACS Appl Mater Interfaces ; 10(2): 1802-1809, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29261282

RESUMO

Long-lived luminescent metal-organic frameworks (MOFs) have attracted much attention due to their structural tunability and potential applications in sensing, biological imaging, security systems, and logical gates. Currently, the long-lived luminescence emission of such inorganic-organic hybrids is dominantly confined to short-wavelength regions. The long-wavelength long-lived luminescence emission, however, has been rarely reported for MOFs. In this work, a series of structurally stable long-wavelength long-lived luminescent MOFs have been successfully synthesized by encapsulating different dyes into the green phosphorescent MOFs Cd(m-BDC)(BIM). The multicolor long-wavelength long-lived luminescence emissions (ranging from green to red) in dye-encapsulated MOFs are achieved by the MOF-to-dye phosphorescence energy transfer. Furthermore, the promising optical properties of these novel long-lived luminescent MOFs allow them to be used as ink pads for advanced anticounterfeiting stamps. Therefore, this work not only offers a facile way to develop new types of multicolor long-lived luminescent materials but also provides a reference for the development of advanced long-lived luminescent anticounterfeiting materials.

15.
RSC Adv ; 8(61): 35271-35279, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35547064

RESUMO

A series of Ce3+-, Tb3+- and Ce3+/Tb3+-doped La3Si8N11O4 phosphors were synthesized by gas-pressure sintering (GPS). The energy transfer between Ce3+ and Tb3+ occurred in the co-doped samples, leading to a tunable emission color from blue to green under the 360 nm excitation. The energy transfer mechanism was controlled by the dipole-dipole interaction. The Ce3+/Tb3+ co-doped sample had an external quantum efficiency of 46.7%, about 5.6 times higher than the Tb-doped La3Si8N11O4 phosphor (8.3%). The thermal quenching of the Tb3+ emission in La3Si8N11O4:Tb,Ce was greatly reduced from 74 to 30% at 250 °C, owing to the energy transfer from Ce3+ to Tb3+. The blue-green La3Si8N11O4:0.01Ce,0.05Tb phosphor was testified to fabricate a warm white LED that showed a high color rendering index of 90.2 and a correlated color temperature of 3570 K. The results suggested that the co-doped La3Si8N11O4:Ce,Tb phosphor could be a potential blue-green down-conversion luminescent material for use in UV-LED pumped wLEDs.

16.
Inorg Chem ; 56(22): 14170-14177, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29112394

RESUMO

Eu2+-doped La3Si8N11O4 phosphors were synthesized by the high temperature solid-state method, and their photoluminescence properties were investigated in this work. La3Si8N11O4:Eu2+ exhibits a strong broad absorption band centered at 320 nm, spanning the spectral range of 300-600 nm due to 4f7 → 4f65d1 electronic transitions of Eu2+. The emission spectra show a broad and asymmetric band peaking at 481-513 nm depending on the Eu2+ concentration, and the emission color can be tuned in a broad range owing to the energy transfer between Eu2+ ions occupying two independent crystallographic sites. Compared to the Ce3+-doped La3Si8N11O4, the Eu2+-doped one shows a larger thermal quenching, predominantly owing to photoionization. Under 320 nm excitation, the internal and external quantum efficiencies are 44 and 33%, respectively.

17.
ACS Appl Mater Interfaces ; 9(27): 22665-22675, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28586204

RESUMO

Phase pure nondoped and Ce doped La3Si6.5Al1.5N9.5O5.5 (Al containing La N-phase) samples have been obtained by solid-state reaction synthesis for the first time. 1% Ce-doped La3Si6.5Al1.5N9.5O5.5 phosphor displays a broad excitation band ranging from UV to 410 nm, with a maximum at 355 nm. UV light excitation results in a narrow Ce3+ 5d-4f emission band (fwhm = 68 nm) centered at 418 nm. The emission can be tuned from 417 nm at 0.5% Ce to 450 nm at 50% Ce. A high internal quantum efficiency up to 84% is achieved for a 1% Ce doped sample, which has CIE chromaticity coordinates of x = 0.157 and y = 0.069, close to the NTSC blue standard (x = 0.155; y = 0.070). Compared to La3Si8O4N11:Ce phosphor, the quantum efficiency and thermal stability have been enhanced for La3Si6.5Al1.5N9.5O5.5:Ce phosphor without shifting the emission peak wavelength. La3Si6.5Al1.5N9.5O5.5:Ce shows less thermal quenching than La3Si8O4N11:Ce and no shift or change in the shape of emission spectra with increasing the temperature from 4 to 573 K. These results show that La3Si6.5Al1.5N9.5O5.5:Ce is more efficient than any other (oxy-)nitride phosphor with an emission in the short wavelength blue region (400-450 nm). A white LED was fabricated using the La3Si6.5Al1.5N9.5O5.5:5%Ce as a blue phosphor. The high color rendering index (Ra = 93.2, R9 = 91.4, and R12 = 89.5) obtained shows that the phosphor is a very promising conversion phosphor for white LEDs.

18.
J Vis Exp ; (117)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911365

RESUMO

Nitride and oxynitride (Sialon) phosphors are good candidates for the ultraviolet and visible emission applications. High performance, good stability and flexibility of their emission properties can be achieved by controlling their composition and dopants. However, a lot of work is still required to improve their properties and to reduce the production cost. A possible approach is to correlate the luminescence properties of the Sialon particles with their local structural and chemical environment in order to optimize their growth parameters and find novel phosphors. For such a purpose, the low-voltage cathodoluminescence (CL) microscopy is a powerful technique. The use of electron as an excitation source allows detecting most of the luminescence centers, revealing their luminescence distribution spatially and in depth, directly comparing CL results with the other electron-based techniques, and investigating the stability of their luminescence properties under stress. Such advantages for phosphors characterization will be highlighted through examples of investigation on several Sialon phosphors by low-energy CL.


Assuntos
Luminescência , Nitrogênio , Elétrons , Medições Luminescentes , Microscopia , Microscopia Eletrônica de Varredura , Tamanho da Partícula
19.
Inorg Chem ; 55(21): 11331-11336, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27779855

RESUMO

Novel Sr2-yEuyB2-2xSi2+3xAl2-xN8+x phosphors were investigated as a function of the boron and aluminum over silicon ratio and as a function of the Eu2+ concentration. Samples were prepared via solid-state reaction synthesis by carefully controlling the synthesis conditions and composition. At high boron and aluminum content, that is, x = 0, a Eu2+ 5d-4f emission is observed of which the maximum shifts from 595 nm for low Eu concentrations (y = 0.005) toward 623 nm for high Eu concentrations (y = 0.5). The samples can be excited by UV or blue light up to ∼475 nm. Substitution of [B2Al]9+ units by [Si3N]9+ units, increasing x up to 0.15, greatly improves the luminescence efficiency up to 46% and shows a very large redshift of the excitation bands with ∼100 nm, while the emission band shifts with ∼10 nm. The shifts are attributed to the lowering of the 5d level as a result of the decreased Eu-N distance upon substitution. Temperature-dependent measurements show that the Eu2+ 5d-4f emission is largely thermally quenched at room temperature for x = 0 due to thermal ionization toward the conduction band, explaining the low luminescence efficiency. The lowering of the 5d level at larger values of x reduces the thermal ionization and consequently increases the thermal stability and quantum efficiency, resulting in strongly luminescent blue-to-orange conversion phosphors that are interesting for light-emitting diode applications.

20.
Phys Chem Chem Phys ; 18(18): 12494-504, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27086764

RESUMO

A red phosphor of Sr2Si5N8:Eu(2+) powder was synthesized by a solid state reaction. The synthesized phosphor was thermally post-treated in an inert and reductive N2-H2 mixed-gas atmosphere at 300-1200 °C. The main phase of the resultant phosphor was identified as Sr2Si5N8. A passivation layer of ∼0.2 µm thickness was formed around the phosphor surface via thermal treatment. Moreover, two different luminescence centers of Eu(SrI) and Eu(SrII) in the synthesized Sr2Si5N8:Eu(2+) phosphor were proposed to be responsible for 620 nm and 670 nm emissions, respectively. More interestingly, thermal- and moisture-induced degradation of PL intensity was effectively reduced by the formation of a passivation layer around the phosphor surface, that is, the relative PL intensity recovered 99.8% of the initial intensity even after encountering thermal degradation; both moisture-induced degraded external and internal QEs were merely 1% of the initial QEs. The formed surface layer was concluded to primarily prevent the Eu(2+) activator from being oxidized, based on the systemic analysis of the mechanisms of thermal- and moisture-induced degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA