Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(17): 5277-5283, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31423786

RESUMO

Lead-free tin perovskite solar cells (PSCs) show the most promise to replace the more toxic lead-based perovskite solar cells. However, the efficiency is significantly less than that of lead-based PSCs as a result of low open-circuit voltage. This is due to the tendency of Sn2+ to oxidize into Sn4+ in the presence of air together with the formation of defects and traps caused by the fast crystallization of tin perovskite materials. Here, post-treatment of the tin perovskite layer with edamine Lewis base to suppress the recombination reaction in tin halide PSCs results in efficiencies higher than 10%, which is the highest reported efficiency to date for pure tin halide PSCs. The X-ray photoelectron spectroscopy data suggest that the recombination reaction originates from the nonstoichiometric Sn:I ratio rather than the Sn4+:Sn2+ ratio. The amine group in edamine bonded the undercoordinated tin, passivating the dangling bonds and defects, resulting in suppressed charge carrier recombination.

2.
ACS Appl Mater Interfaces ; 11(34): 31105-31110, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31385691

RESUMO

In the composition of Q0.1(FA0.75MA0.25)0.9SnI3, Q is replaced with Na+, K+, Cs+, ethylammonium+ (EA+), and butylammonium+ (BA+), respectively, and the relationship between actually measured lattice strain and photovoltaic performances is discussed. The lattice strain evaluated by the Williamson-hall plot of X-ray diffraction data decreased as the tolerance factor was close to one. The efficiency of the Sn-perovskite solar cell was enhanced as the lattice strain decreased. Among them, EA0.1(FA0.75MA0.25)0.9SnI3 having lowest lattice strain gave the best result of 5.41%. Because the carrier mobility increased with a decrease in the lattice strain, these lattice strains would disturb carrier mobility and decrease the solar cell efficiency. Finally, the results that the efficiency of the SnGe-perovskite solar cells was gradually enhanced from 6.42 to 7.60% during storage, was explained by the lattice strain relaxation during the storage.

3.
Angew Chem Int Ed Engl ; 57(39): 12745-12749, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30069989

RESUMO

Compared with organic-inorganic perovskites, all-inorganic cesium-based perovskites without volatile organic compounds have gained extensive interests because of the high thermal stability. However, they have a problem on phase transition from cubic phase (active for photo-electric conversion) to orthorhombic phase (inactive for photo-electric conversion) at room temperature, which has hindered further progress. Herein, novel inorganic CsPb1-x Gex I2 Br perovskites were prepared in humid ambient atmosphere without a glovebox. The phase stability of the all-inorganic perovskite was effectively enhanced after germanium addition. In addition, the highest power conversion efficiency of 10.8 % with high open-circuit voltage (VOC ) of 1.27 V in a planar solar cell based on CsPb0.8 Ge0.2 I2 Br perovskite was achieved. Furthermore, the highest VOC up to 1.34 V was obtained by CsPb0.7 Ge0.3 I2 Br perovskite, which is a remarkable record in the field of all-inorganic perovskite solar cells. More importantly, all the photovoltaic parameters of CsPb0.8 Ge0.2 I2 Br perovskite solar cells showed nearly no decay after 7 h measurement in 50-60 % relative humidity without encapsulation.

4.
ACS Appl Mater Interfaces ; 10(29): 24543-24548, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29969012

RESUMO

Despite the high efficiency of MAPbI3 perovskite solar cells, the long term stability and degradation in humid atmosphere are issues that still needed to be addressed. In this work, magnesium iodide (MgI2) was first successfully used as a dopant into MAPbI3 perovskite prepared in humid air atmosphere. Mg doping decreased the valence band level, which was determined from photoelectron yield spectroscopy. Compared to the pristine MAPbI3 perovskite film, the 1.0% Mg-doped perovskite film showed increased crystal grain size and formation of pinhole-free perovskite film. Performance of the solar cell was increased from 14.2% of the doping-free solar cell to 17.8% of 1.0% Mg-doped device. Moreover, 90% of the original power conversion efficiency was still retained after storage in 30-40% relative humidity for 600 h.

5.
J Phys Chem Lett ; 9(7): 1682-1688, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29536736

RESUMO

Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.

6.
ChemSusChem ; 9(18): 2634-2639, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27584915

RESUMO

The interface between the perovskite (PVK, CH3 NH3 PbI3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO2 /mesoporous TiO2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 µsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Óxidos/química , Energia Solar , Titânio/química , Compostos de Amônio/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA