Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6642, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103329

RESUMO

Plasmodium falciparum is the main causative agent of malaria, a deadly disease that mainly affects children under five years old. Artemisinin-based combination therapies have been pivotal in controlling the disease, but resistance has arisen in various regions, increasing the risk of treatment failure. The non-mevalonate pathway is essential for the isoprenoid synthesis in Plasmodium and provides several under-explored targets to be used in the discovery of new antimalarials. 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) is the first and rate-limiting enzyme of the pathway. Despite its importance, there are no structures available for any Plasmodium spp., due to the complex sequence which contains large regions of high disorder, making crystallisation a difficult task. In this manuscript, we use cryo-electron microscopy to solve the P. falciparum DXPS structure at a final resolution of 2.42 Å. Overall, the structure resembles other DXPS enzymes but includes a distinct N-terminal domain exclusive to the Plasmodium genus. Mutational studies show that destabilization of the cap domain interface negatively impacts protein stability and activity. Additionally, a density for the co-factor thiamine diphosphate is found in the active site. Our work highlights the potential of cryo-EM to obtain structures of P. falciparum proteins that are unfeasible by means of crystallography.


Assuntos
Microscopia Crioeletrônica , Plasmodium falciparum , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Pentosiltransferases/metabolismo , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/ultraestrutura , Domínios Proteicos , Modelos Moleculares , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/ultraestrutura , Transferases
2.
Chem Sci ; 15(30): 11946-11955, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092115

RESUMO

Isonitrile natural products, also known as isocyanides, demonstrate potent antimicrobial activities, yet our understanding of their molecular targets remains limited. Here, we focus on the so far neglected group of monoisonitriles to gain further insights into their antimicrobial mode of action (MoA). Screening a focused monoisonitrile library revealed a potent S. aureus growth inhibitor with a different MoA compared to previously described isonitrile antibiotics. Chemical proteomics via competitive cysteine reactivity profiling, uncovered covalent modifications of two essential metabolic enzymes involved in the fatty acid biosynthetic process (FabF) and the hexosamine pathway (GlmS) at their active site cysteines. In-depth studies with the recombinant enzymes demonstrated concentration-dependent labeling, covalent binding to the catalytic site and corresponding functional inhibition by the isocyanide. Thermal proteome profiling and full proteome studies of compound-treated S. aureus further highlighted the destabilization and dysregulation of proteins related to the targeted pathways. Cytotoxicity and the inhibition of cytochrome P450 enzymes require optimization of the hit molecule prior to therapeutic application. The here described novel, covalent isocyanide MoA highlights the versatility of the functional group, making it a useful tool and out-of-the-box starting point for the development of innovative antibiotics.

3.
Eur J Med Chem ; 276: 116685, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39042991

RESUMO

Pseudomonas aeruginosa causes life-threatening infections especially in hospitalized patients and shows an increasing resistance to established antibiotics. A process known as quorum sensing (QS) enables the pathogen to collectively adapt to various environmental conditions. Disrupting this cell-to-cell communication machinery by small-molecular entities leads to a blockade of bacterial pathogenicity. We aim to devise QS inhibitors acting on the PA-specific PQS QS system via the signal-molecule receptor and transcriptional regulator PqsR (MvfR). In this manuscript, we describe the further optimization of PqsR inverse agonists by broadening the structural space of a previously described triazole-bearing lead compound and arriving at highly potent thiazole derivatives with activities against P. aeruginosa virulence factor pyocyanin in the nanomolar range. All new derivatives were profiled regarding biological activity as well as in vitro ADMET parameters. Additionally, we assessed safety-pharmacology characteristics of the two most promising compounds both bearing a 3-chloro-4-isopropoxyphenyl motive. Demonstrating an overall favorable profile, our new PqsR inverse agonists represent a valuable addition as optimized lead compounds, enabling preclinical development of P. aeruginosa-specific pathoblockers.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Percepção de Quorum , Tiazóis , Percepção de Quorum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Humanos , Descoberta de Drogas , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Animais
4.
Arch Pharm (Weinheim) ; : e2400267, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896404

RESUMO

Energy-coupling factor transporters (ECFTs) are membrane-bound ATP-binding cassette (ABC) transporters in prokaryotes that are found in pathogens against which novel antibiotics are urgently needed. To date, just 54 inhibitors of three molecular-structural classes with mostly weak inhibitory activity are known. Target repurposing is a strategy that transfers knowledge gained from a well-studied protein family to under-studied targets of phylogenetic relation. Forty-eight human ABC transporters are known that may harbor structural motifs similar to ECFTs to which particularly multitarget compounds may bind. We assessed 31 multitarget compounds which together target the entire druggable human ABC transporter proteome against ECFTs, of which nine showed inhibitory activity (hit rate 29.0%) and four demonstrated moderate to strong inhibition of an ECFT (IC50 values between 4.28 and 50.2 µM) as well as antibacterial activity against ECFT-expressing Streptococcus pneumoniae. Here, ivermectin was the most potent candidate (MIC95: 22.8 µM), and analysis of five ivermectin derivatives revealed moxidectin as one of the most potent ECFT-targeting antibacterial agents (IC50: 2.23 µM; MIC95: 2.91 µM). Distinct molecular-structural features of avermectins and derivatives as well as the differential biological response of the hit compounds in general provided first indications with respect to the structure-activity relationships and mode of action, respectively.

5.
Eur J Pharm Biopharm ; 200: 114343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801980

RESUMO

Responsive and adaptive soft-matter systems represent an advanced category of materials with potential applications in drug delivery. Among these, liquid crystals (LCs) emerge as multifunctional anisotropic scaffolds capable of reacting to temperature, light, electric or magnetic fields. Specifically, the ordering and physical characteristics of thermotropic LCs are primarily contingent on temperature as an external stimulus. This comprehensive review aims to bridge a notable gap in the biomedical application of thermotropic mesogens by exclusively focusing on drug delivery. Anticipated to inspire diverse ideas, the review intends to facilitate the elegant exploitation of controllable and temperature-induced characteristics of LCs to enhance drug permeation. Here, we delineate recent advancements in thermally-driven LCs with a substantial emphasis on LC monomer mixtures, elastomers, polymers, microcapsules and membranes. Moreover, special emphasis is placed on the biocompatibility and toxicity of LCs as the foremost prerequisite for their application in healthcare. Given the promising prospect of thermotropic LC formulations in a clinical context, a special section is devoted to skin drug delivery. The review covers content from multiple disciplines, primarily targeting researchers interested in innovative strategies in drug delivery. It also appeals to those enthusiastic about firsthand exploration of the feasible biomedical applications of thermotropic LCs. To the best of our knowledge, this marks the first review addressing thermotropic LCs as tunable soft-matter systems for drug delivery.


Assuntos
Preparações de Ação Retardada , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Cristais Líquidos , Temperatura , Cristais Líquidos/química , Humanos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Animais , Liberação Controlada de Fármacos , Polímeros/química , Pele/metabolismo , Pele/efeitos dos fármacos , Administração Cutânea
6.
Eur J Pharm Biopharm ; 200: 114336, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795784

RESUMO

Antimicrobial resistance is becoming more prominent day after day due to a number of mechanisms by microbes, especially the sophisticated biological barriers of bacteria, especially in Gram-negatives. There, the lipopolysaccharides (LPS) layer is a unique component of the outer leaflet of the outer membrane which is highly impermeable and prevents antibiotics from passing passively into the intracellular compartments. Biodynamers, a novel class of dynamically bio-responsive polymers, may open new perspectives to overcome this particular barrier by accommodating various secondary structures and form supramolecular structures in such bacterial microenvironments. Generally, bio-responsive polymers are not only candidates as bio-active molecules against bacteria but also carriers via their interactions with the cargo. Based on their dynamicity, design flexibility, biodegradability, biocompatibility, and pH-responsiveness, we investigated the potential of two peptide-based biodynamers for improving antimicrobial drug delivery. By a range of experimental methods, we discovered a greater affinity of Arg-biodynamers for bacterial membranes than for mammalian membranes as well as an enhanced LPS targeting on the bacterial membrane, opening perspectives for enhancing the delivery of antimicrobials across the Gram-negative bacterial cell envelope. This could be explained by the change of the secondary structure of Arg-biodynamers into a predominant ß-sheet character in the LPS microenvironment, by contrast to the α-helical structure typically observed for most lipid membrane-permeabilizing peptides. In comparison to poly-L-arginine, the intrinsic antibacterial activity of Arg-biodynamers was nearly unchanged, but its toxicity against mammalian cells was >128-fold reduced. When used in bacterio as an antibiotic potentiator, however, Arg-biodynamers improved the minimum inhibitory concentration (MIC) against Escherichia coli by 32 times compared to colistin alone. Similar effect has also been observed in two stains of Pseudomonas aeruginosa. Arg-biodynamers may therefore represent an interesting option as an adjuvant for antibiotics against Gram-negative bacteria and to overcome antimicrobial resistance.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Lipopolissacarídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Humanos , Escherichia coli/efeitos dos fármacos , Polímeros/química , Arginina/química , Sistemas de Liberação de Medicamentos/métodos
7.
RSC Med Chem ; 15(5): 1773-1781, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784473

RESUMO

Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.

8.
Int J Nanomedicine ; 19: 4429-4449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784761

RESUMO

Background: Therapeutic proteins and peptides offer great advantages compared to traditional synthetic molecular drugs. However, stable protein loading and precise control of protein release pose significant challenges due to the extensive range of physicochemical properties inherent to proteins. The development of a comprehensive protein delivery strategy becomes imperative accounting for the diverse nature of therapeutic proteins. Methods: Biodynamers are amphiphilic proteoid dynamic polymers consisting of amino acid derivatives connected through pH-responsive dynamic covalent chemistry. Taking advantage of the amphiphilic nature of the biodynamers, PNCs and DEs were possible to be prepared and investigated to compare the delivery efficiency in drug loading, stability, and cell uptake. Results: As a result, the optimized PNCs showed 3-fold encapsulation (<90%) and 5-fold loading capacity (30%) compared to DE-NPs. PNCs enhanced the delivery efficiency into the cells but aggregated easily on the cell membrane due to the limited stability. Although DE-NPs were limited in loading capacity compared to PNCs, they exhibit superior adaptability in stability and capacity for delivering a wider range of proteins compared to PNCs. Conclusion: Our study highlights the potential of formulating both PNCs and DE-NPs using the same biodynamers, providing a comparative view on protein delivery efficacy using formulation methods.


Assuntos
Emulsões , Peptídeos , Peptídeos/química , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Emulsões/química , Humanos , Proteínas/química , Proteínas/administração & dosagem , Proteínas/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Aminoácidos/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos
9.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490063

RESUMO

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Neuroproteção , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
10.
Int J Antimicrob Agents ; 63(5): 107160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537721

RESUMO

In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents. This pathway consists of seven consecutive enzymatic reactions, of which 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD) and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) catalyze the third and fifth steps, respectively. In this study, we characterized the enzymatic activities and protein structures of Helicobacter pylori IspDF and Acinetobacter baumannii IspD. Then, using the direct interaction-based thermal shift assay, we conducted a compound screening of an approved drug library and identified 27 hit compounds potentially binding to AbIspD. Among them, two natural products, rosmarinic acid and tanshinone IIA sodium sulfonate, exhibited inhibitory activities against HpIspDF and AbIspD, by competing with one of the substrates, MEP. Moreover, tanshinone IIA sodium sulfonate also demonstrated certain antibacterial effects against H. pylori. In summary, we identified two IspD inhibitors from approved ingredients, broadening the scope for antibiotic discovery targeting the MEP pathway.


Assuntos
Acinetobacter baumannii , Antibacterianos , Helicobacter pylori , Hemiterpenos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Compostos Organofosforados/farmacologia , Humanos , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
11.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38502093

RESUMO

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Assuntos
Antibacterianos , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Animais , Enterococcus/efeitos dos fármacos , Estrutura Molecular , Humanos , Camundongos
12.
Arch Pharm (Weinheim) ; 357(4): e2300656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304944

RESUMO

Designing novel candidates as potential antibacterial scaffolds has become crucial due to the lack of new antibiotics entering the market and the persistent rise in multidrug resistance. Here, we describe a new class of potent antibacterial agents based on a 5-aryl-N2,N4-dibutylpyrimidine-2,4-diamine scaffold. Structural optimization focused on the 5-aryl moiety and the bioisosteric replacement of the side chain linker atom. Screening of the synthesized compounds focused on a panel of bacterial strains, including gram-positive Staphylococcus aureus strains (Newman MSSA, methicillin- and vancomycin-resistant), and the gram-negative Escherichia coli (ΔAcrB strain). Several compounds showed broad-spectrum antibacterial activity with compound 12, bearing a 4-chlorophenyl substituent, being the most potent among this series of compounds. This frontrunner compound revealed a minimum inhibitory concentration (MIC) value of 1 µg/mL against the S. aureus strain (Mu50 methicillin-resistant S. aureus/vancomycin-intermediate S. aureus) and an MIC of 2 µg/mL against other tested strains. The most potent derivatives were further tested against a wider panel of bacteria and evaluated for their cytotoxicity, revealing further potent activities toward Streptococcus pneumoniae, Enterococcus faecium, and Enterococcus faecalis. To explore the mode of action, compound 12 was tested in a macromolecule inhibition assay. The obtained data were supported by the safety profile of compound 12, which possessed an IC50 of 12.3 µg/mL against HepG2 cells. The current results hold good potential for a new class of extended-spectrum antibacterial agents.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Relação Estrutura-Atividade , Bactérias , Pirimidinas/farmacologia , Testes de Sensibilidade Microbiana
14.
ACS Infect Dis ; 10(3): 1000-1022, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
15.
Nat Commun ; 15(1): 1173, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332002

RESUMO

Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.


Assuntos
Dibenzocicloeptenos , Piridinas , Infecções por Vírus Respiratório Sincicial , Animais , Feminino , Camundongos , Reposicionamento de Medicamentos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química
16.
Chem Commun (Camb) ; 60(7): 870-873, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38164786

RESUMO

Herein, we present the first application of target-directed dynamic combinatorial chemistry (tdDCC) to the whole complex of the highly dynamic transmembrane, energy-coupling factor (ECF) transporter ECF-PanT in Streptococcus pneumoniae. In addition, we successfully employed the tdDCC technique as a hit-identification and -optimization strategy that led to the identification of optimized ECF inhibitors with improved activity. We characterized the best compounds regarding cytotoxicity and performed computational modeling studies on the crystal structure of ECF-PanT to rationalize their binding mode. Notably, docking studies showed that the acylhydrazone linker is able to maintain the crucial interactions.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Modelos Moleculares , Proteínas de Bactérias/química
18.
ACS Cent Sci ; 9(12): 2205-2215, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161367

RESUMO

Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa are emerging worldwide as a major threat to human health. Conventional antibiotic monotherapy suffers from rapid resistance development, underlining urgent need for novel treatment concepts. Here, we report on a nontraditional approach to combat P. aeruginosa-derived infections by targeting its main virulence factor, the elastase LasB. We discovered a new chemical class of phosphonates with an outstanding in vitro ADMET and PK profile, auspicious activity both in vitro and in vivo. We established the mode of action through a cocrystal structure of our lead compound with LasB and in several in vitro and ex vivo models. The proof of concept of a combination of our pathoblocker with levofloxacin in a murine neutropenic lung infection model and the reduction of LasB protein levels in blood as a proof of target engagement demonstrate the great potential for use as an adjunctive treatment of lung infections in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA