Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(17): eadn4152, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657059

RESUMO

Short-term experimental studies provided evidence that plant diversity increases ecosystem resilience and resistance to drought events, suggesting diversity to serve as a nature-based solution to address climate change. However, it remains unclear whether the effects of diversity are momentary or still hold over the long term in natural forests to ensure that the sustainability of carbon sinks. By analyzing 57 years of inventory data from dryland forests in Canada, we show that productivity of dryland forests decreased at an average rate of 1.3% per decade, in concert with the temporally increasing temperature and decreasing water availability. Increasing functional trait diversity from its minimum (monocultures) to maximum value increased productivity by 13%. Our results demonstrate the potential role of tree functional trait diversity in alleviating climate change impacts on dryland forests. While recognizing that nature-based climate mitigation (e.g., planting trees) can only be partial solutions, their long-term (decadal) efficacy can be improved by enhancing functional trait diversity across the forest community.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Árvores , Canadá , Ecossistema , Temperatura
3.
Nature ; 618(7963): 94-101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100916

RESUMO

Increasing soil carbon and nitrogen storage can help mitigate climate change and sustain soil fertility1,2. A large number of biodiversity-manipulation experiments collectively suggest that high plant diversity increases soil carbon and nitrogen stocks3,4. It remains debated, however, whether such conclusions hold in natural ecosystems5-12. Here we analyse Canada's National Forest Inventory (NFI) database with the help of structural equation modelling (SEM) to explore the relationship between tree diversity and soil carbon and nitrogen accumulation in natural forests. We find that greater tree diversity is associated with higher soil carbon and nitrogen accumulation, validating inferences from biodiversity-manipulation experiments. Specifically, on a decadal scale, increasing species evenness from its minimum to maximum value increases soil carbon and nitrogen in the organic horizon by 30% and 42%, whereas increasing functional diversity enhances soil carbon and nitrogen in the mineral horizon by 32% and 50%, respectively. Our results highlight that conserving and promoting functionally diverse forests could promote soil carbon and nitrogen storage, enhancing both carbon sink capacity and soil nitrogen fertility.


Assuntos
Biodiversidade , Sequestro de Carbono , Carbono , Florestas , Nitrogênio , Solo , Árvores , Carbono/metabolismo , Nitrogênio/metabolismo , Solo/química , Árvores/classificação , Árvores/metabolismo
4.
Ecol Lett ; 25(9): 2009-2021, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904819

RESUMO

Concerning declines in insect populations have been reported from Europe and the United States, yet there are gaps in our knowledge of the drivers of insect trends and their distribution across the world. We report on our analysis of a spatially extensive, 14-year study of ground-dwelling beetles in four natural forest biomes spanning Japan's entire latitudinal range (3000 km). Beetle species richness, abundance and biomass declined in evergreen coniferous forests but increased in broadleaf-coniferous mixed forests. Further, beetles in evergreen coniferous forests responded negatively to increased temperature and precipitation anomalies, which have both risen over the study's timespan. These significant changes parallel reports of climate-driven changes in forest tree species, providing further evidence that climate change is altering forest ecosystems fundamentally. Given the enormous biodiversity and ecosystem services that forests support globally, the implications for biodiversity change resulting from climate change could be profound.


Assuntos
Besouros , Traqueófitas , Animais , Biodiversidade , Mudança Climática , Ecossistema , Florestas , Japão , Árvores
5.
Glob Chang Biol ; 27(16): 3846-3858, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33993581

RESUMO

Global environmental changes have strongly affected forest demographic rates, particularly amplified tree mortality in high latitude forests (e.g., two to five times greater mortality probability over the half-century). Although forest functional composition is critical for multitrophic biodiversity and ecosystem functioning, it remains unclear how functional composition has changed over time across large high latitude regions, which have been warming twice the rate of the globe as a whole. Using extensive spatial and long-term forest inventory data (17,107 plots monitored 1951-2016) across Canada, we found that after accounting for stand age-dependent functional shifts, functional composition shifted toward fast-growing deciduous broadleaved trees and higher drought tolerance over time. The temporal shift toward deciduous broadleaved trees was consistent across the baseline climate. However, over the study period, drought tolerance increased (or shade tolerance decreased) by 300% in colder boreal regions, while drought tolerance did not shift significantly in warmer temperate climates. A further analysis accounting for temporal changes in atmospheric CO2 , temperature, and water availability indicated that the functional composition of colder regions shifted toward drought tolerance more rapidly with rising CO2 than warmer regions, suggesting the greater vulnerability of boreal forests than temperate forests under ongoing global environmental changes. Future ecosystem management practices should consider spatial differences in functional responses to global environmental change, focusing on high latitude forests experiencing higher rates of warming and compositional changes.


Assuntos
Mudança Climática , Ecossistema , Canadá , Florestas , Taiga
6.
Ecol Lett ; 22(6): 999-1008, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30920143

RESUMO

Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long-term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species-rich forests but decreased in species-poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species-rich than species-poor forests. A further analysis indicated that growth of species-rich (but not species-poor) forests was statistically positively associated with rising CO2 , and that mortality in species-poor forests increased more as climate moisture availability decreased than it did in species-rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.


Assuntos
Mudança Climática , Florestas , Taiga , Canadá , Árvores
7.
Biol Rev Camb Philos Soc ; 93(1): 439-456, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28695682

RESUMO

Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning.


Assuntos
Biodiversidade , Mudança Climática , Florestas , Modelos Biológicos , Plantas/metabolismo , Fatores de Tempo
8.
Zoolog Sci ; 34(2): 137-146, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28397597

RESUMO

We compared the reliability of visual diagnostic criteria to DNA diagnostic techniques, including newly designed primers, to discriminate Japanese marten (Martes melampus) feces from those of other sympatric carnivore species. Visual criteria proved > 95% reliable for fresh, odoriferous scats in good condition. Based upon this verification, we then examined if and how Japanese marten diet differs among seasons at high elevation study site (1500-2026 m). We also considered how intra-specific competition with the Japanese red fox (Vulpes vulpes japonica) may shape marten feeding ecology. From 120 Japanese marten fecal samples, high elevation diet comprised (frequency of occurrence) 30.6-66.0% mammals, 41.0-72.2% insects and 10.6-46.2% fruits, subject to seasonal variation, with a Shannon-Weaver index value of 2.77. These findings contrast substantially to seasonal marten diet reported in adjacent lowland regions (700-900 m), particularly in terms of fruit consumption, showing the trophic adaptability of the Japanese marten. We also noted a substantial dietary overlap with the red fox (n = 26 scats) with a Shannon-Weaver index of 2.61, inferring little trophic niche mutual exclusion (trophic niche overlap: 0.95), although some specific seasonal prey selection differences were likely related to relative differences in body size between foxes and martens. This additional information on the feeding ecology of the Japanese marten enables a better assessment of the specific risks populations face in mountainous regions.


Assuntos
Fezes/química , Comportamento Alimentar , Mustelidae/anatomia & histologia , Mustelidae/genética , Estações do Ano , Distribuição Animal , Animais , Dieta , Japão , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA