Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 11(9): e0162981, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27637108

RESUMO

The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringens heme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.


Assuntos
Clostridium perfringens/metabolismo , Heme/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcrição Gênica
2.
Toxins (Basel) ; 7(2): 516-34, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25675415

RESUMO

Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host's innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process.


Assuntos
Toxinas Bacterianas/toxicidade , Clostridium septicum/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Toxinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Camundongos , Músculo Esquelético/enzimologia , Proteínas Citotóxicas Formadoras de Poros/genética , Sepse/enzimologia , Sepse/microbiologia , Baço/enzimologia , Células Vero
3.
Anaerobe ; 30: 199-204, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25152227

RESUMO

Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Regulação Bacteriana da Expressão Gênica , Maltose/metabolismo , Transdução de Sinais , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo
4.
J R Soc Interface ; 11(97): 20140454, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24898023

RESUMO

The role that DNA conformation plays in the biochemistry of cells has been the subject of intensive research since DNA polymorphism was discovered. B-DNA has long been considered the native form of DNA in cells although alternative conformations of DNA are thought to occur transiently and along short tracts. Here, we report the first direct observation of a fully reversible en masse conformational transition between B- and A-DNA within live bacterial cells using Fourier transform infrared (FTIR) spectroscopy. This biospectroscopic technique allows for non-invasive and reagent-free examination of the holistic biochemistry of samples. For this reason, we have been able to observe the previously unknown conformational transition in all four species of bacteria investigated. Detection of this transition is evidence of a previously unexplored biological significance for A-DNA and highlights the need for new research into the role that A-DNA plays as a cellular defence mechanism and in stabilizing the DNA conformation. Such studies are pivotal in understanding the role of A-DNA in the evolutionary pathway of nucleic acids. Furthermore, this discovery demonstrates the exquisite capabilities of FTIR spectroscopy and opens the door for further investigations of cell biochemistry with this under-used technique.


Assuntos
DNA Forma A/química , DNA Forma A/ultraestrutura , DNA de Forma B/química , DNA de Forma B/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Dessecação , Conformação de Ácido Nucleico , Transição de Fase , Proteus vulgaris/genética
5.
J Infect Dis ; 210(3): 483-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24550443

RESUMO

Gas gangrene is a potentially fatal disease that is primarily caused by the ubiquitous, anaerobic bacteria Clostridium perfringens and Clostridium septicum. Treatment is limited to antibiotic therapy, debridement of the infected tissue, and, in severe cases, amputation. The need for new treatment approaches is compelling. Opioid-based analgesics such as buprenorphine and morphine also have immunomodulatory properties, usually leading to faster disease progression. However, here we show that mice pretreated with buprenorphine and morphine do not die from clostridial myonecrosis. Treatment with buprenorphine after the onset of infection also arrested disease development. Protection against myonecrotic disease was specific to C. perfringens-mediated myonecrosis; buprenorphine did not protect against disease caused by C. septicum infection even though infections due to both species are very similar. These data provide the first evidence of a protective role for opioids during infection and suggest that new therapeutic strategies may be possible for the treatment of C. perfringens-mediated myonecrosis.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Clostridium perfringens , Gangrena Gasosa/tratamento farmacológico , Morfina/uso terapêutico , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Naltrexona/uso terapêutico
6.
PLoS One ; 8(9): e73525, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023881

RESUMO

Clostridium perfringens is ubiquitous in nature and is often found as a commensal of the human and animal gastrointestinal tract. It is the primary etiological agent of clostridial myonecrosis, or gas gangrene, a serious infection that results in extensive tissue necrosis due to the action of one or more potent extracellular toxins. α-toxin and perfringolysin O are the major extracellular toxins involved in the pathogenesis of gas gangrene, but histotoxic strains of C. perfringens, such as strain 13, also produce many degradative enzymes such as collagenases, hyaluronidases, sialidases and the cysteine protease, α-clostripain. The production of many of these toxins is regulated either directly or indirectly by the global VirSR two-component signal transduction system. By isolating a chromosomal mutant and carrying out microarray analysis we have identified an orphan sensor histidine kinase, which we have named ReeS (regulator of extracellular enzymes sensor). Expression of the sialidase genes nanI and nanJ was down-regulated in a reeS mutant. Since complementation with the wild-type reeS gene restored nanI and nanJ expression to wild-type levels, as shown by quantitative reverse transcription-PCR and sialidase assays we concluded that ReeS positively regulates the expression of these sialidase genes. However, mutation of the reeS gene had no significant effect on virulence in the mouse myonecrosis model. Sialidase production in C. perfringens has been previously shown to be regulated by both the VirSR system and RevR. In this report, we have analyzed a previously unknown sensor histidine kinase, ReeS, and have shown that it also is involved in controlling the expression of sialidase genes, adding further complexity to the regulatory network that controls sialidase production in C. perfringens.


Assuntos
Clostridium perfringens/metabolismo , Neuraminidase/biossíntese , Proteínas Quinases/metabolismo , Animais , Clostridium perfringens/citologia , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Espaço Extracelular/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Neuraminidase/genética , Proteínas Quinases/genética
7.
PLoS One ; 6(7): e22762, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829506

RESUMO

Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Clostridium/enzimologia , Clostridium perfringens/patogenicidade , Cisteína Endopeptidases/metabolismo , Necrose , Virulência/genética , Animais , Sobrevivência Celular , Células Cultivadas , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Feminino , Hemoglobinas/metabolismo , Proteínas Hemolisinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mutagênese Insercional , Mutação/genética , Taxa de Sobrevida
8.
Infect Immun ; 79(6): 2145-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402758

RESUMO

Clostridium perfringens causes clostridial myonecrosis or gas gangrene and produces several extracellular hydrolytic enzymes and toxins, many of which are regulated by the VirSR signal transduction system. The revR gene encodes a putative orphan response regulator that has similarity to the YycF (WalR), VicR, PhoB, and PhoP proteins from other Gram-positive bacteria. RevR appears to be a classical response regulator, with an N-terminal receiver domain and a C-terminal domain with a putative winged helix-turn-helix DNA binding region. To determine its functional role, a revR mutant was constructed by allelic exchange and compared to the wild type by microarray analysis. The results showed that more than 100 genes were differentially expressed in the mutant, including several genes involved in cell wall metabolism. The revR mutant had an altered cellular morphology; unlike the short rods observed with the wild type, the mutant cells formed long filaments. These changes were reversed upon complementation with a plasmid that carried the wild-type revR gene. Several genes encoding extracellular hydrolytic enzymes (sialidase, hyaluronidase, and α-clostripain) were differentially expressed in the revR mutant. Quantitative enzyme assays confirmed that these changes led to altered enzyme activity and that complementation restored the wild-type phenotype. Most importantly, the revR mutant was attenuated for virulence in the mouse myonecrosis model compared to the wild type and the complemented strains. These results provide evidence that RevR regulates virulence in C. perfringens; it is the first response regulator other than VirR to be shown to regulate virulence in this important pathogen.


Assuntos
Clostridium perfringens/patogenicidade , Genes Bacterianos/fisiologia , Fatores de Virulência/genética , Animais , Infecções por Clostridium/microbiologia , Clostridium perfringens/genética , Cisteína Endopeptidases/metabolismo , Feminino , Genes Bacterianos/genética , Hialuronoglucosaminidase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Virulência/fisiologia
9.
Microbes Infect ; 11(3): 413-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19284973

RESUMO

Clostridium perfringens and Clostridium septicum are the most common causes of clostridial myonecrosis or gas gangrene. Although they mediate a similar disease pathology, they elaborate functionally very different alpha-toxins. We used a reciprocal complementation approach to assess the contribution of the primary toxin of each species to disease and found that C. perfringens alpha-toxin (PLC) was able to mediate the gross pathology of myonecrosis even in a C. septicum background, although it could not induce vascular leukostasis. Conversely, while C. septicum alpha-toxin restored some virulence to a C. perfringens plc mutant, it was less active than in its native background.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/toxicidade , Clostridium perfringens/patogenicidade , Clostridium septicum/patogenicidade , Gangrena Gasosa/microbiologia , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/toxicidade , Animais , Clostridium perfringens/genética , Clostridium septicum/genética , Feminino , Teste de Complementação Genética , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA