Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Phys Chem B ; 128(20): 5008-5017, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38728154

RESUMO

The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.

3.
J Oleo Sci ; 73(4): 419-427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556277

RESUMO

Phospholipids and surfactants form membranes and other self-assembled structures in water. However, it is not fully understood how the surrounding water (hydration water) is involved in their structure formation. In this paper, I summarize the results of our investigation of the long-range hydration state of phospholipids and surfactants at their surfaces by means of terahertz spectroscopy. By observing the collective rotational dynamics of water in the picosecond time scale, this technique allows us to observe not only the water directly bound to the solute, but also the weakly affected water outside of it. For example, PC phospholipids inhibit water dynamics over long distances, whereas PE phospholipids make water more mobile than bulk water. The causes of this difference in hydration and how it is involved in the structural formation of the membrane are reviewed.


Assuntos
Surfactantes Pulmonares , Espectroscopia Terahertz , Lipoproteínas , Fosfolipídeos/química , Tensoativos , Espectroscopia Terahertz/métodos , Água/química
4.
J Phys Chem Lett ; 14(49): 11235-11241, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38060373

RESUMO

This work investigates the water fraction dependence of the aggregation behavior of hydrophobic solutes in water-tetrahydrofuran (THF) and the elucidation of the role of THF using fluorescence microscopy, dynamic light scattering, neutron and X-ray scattering, and photoluminescence measurements. On the basis of the obtained results, the following model is proposed: hydrophobic molecules are molecularly dispersed in the low-water-content region (10-20 vol %), while they form mesoscopic particles upon increasing the water fraction to ∼30 vol %. This abrupt change is due to the composition fluctuation of the water-THF binary system to form hydrophobic areas in THF, followed by THF-rich droplets where hydrophobic solutes are incorporated and form loose aggregates. Further increasing the water content prompts the desolvation of THF, which decreases the particle size and generates tight aggregates of solute molecules. This model is consistent with the luminescence behavior of the solutes and will be helpful to control the aggregation state of hydrophobic solutes in various applications.

5.
Struct Dyn ; 10(4): 044701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37637480

RESUMO

The dynamics of hydration water (HW) in 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) was investigated by means of quasi-elastic neutron scattering (QENS) and compared with those observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The headgroup dynamics of DMPE was investigated using a mixture of tail-deuterated DMPE and D2O, and the QENS profiles were interpreted as consisting of three modes. The fast mode comprised the rotation of hydrogen atoms in -NH3+ and -CH2- groups in the headgroup of DMPE, the medium-speed mode comprised fluctuations in the entire DMPE molecule, and the slow mode comprised fluctuations in the membrane. These interpretations were confirmed using molecular dynamics (MD) simulations. The HW dynamics analysis was performed on a tail-deuterated DMPE and H2O mixture. The QENS profiles were analyzed in terms of three modes: (1) a slow mode, identified as loosely bound HW in the DMPC membrane; (2) a medium-speed mode similar to free HW in the DMPC membrane; and (3) a fast mode, identified as rotational motion. The relaxation time for the fast mode was approximately six times shorter than that of rotational water in DMPC, consistent with the results of terahertz time-domain spectroscopy. The activation energy of medium-speed HW in DMPE differed from that of free HW in DMPC, suggesting the presence of different hydration states or hydrogen-bonded networks around the phosphocholine and phosphoethanolamine headgroups.

6.
J Phys Chem B ; 127(28): 6296-6305, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37417885

RESUMO

Water is considered integral for the stabilization and function of proteins, which has recently attracted significant attention. However, the microscopic aspects of water ranging up to the second hydration shell, including strongly and weakly bound water at the sub-nanometer scale, are not yet well understood. Here, we combined terahertz spectroscopy, thermal measurements, and infrared spectroscopy to clarify how the strongly and weakly bound hydration water changes upon protein denaturation. With denaturation, that is, the exposure of hydrophobic groups in water and entanglement of hydrophilic groups, the number of strongly bound hydration water decreased, while the number of weakly bound hydration water increased. Even though the constraint of water due to hydrophobic hydration is weak, it extends to the second hydration shell as it is caused by the strengthening of hydrogen bonds between water molecules, which is likely the key microscopic mechanism for the destabilization of the native state due to hydration.


Assuntos
Proteínas , Água , Água/química , Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Ligação de Hidrogênio , Desnaturação Proteica
7.
Nat Commun ; 14(1): 2825, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217486

RESUMO

The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.


Assuntos
Muramidase , Proteínas , Muramidase/química , Proteínas/química , Água/química , Fenômenos Químicos
8.
J Phys Chem B ; 126(13): 2466-2475, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35349285

RESUMO

There is a long, ongoing debate on how small molecules (osmolytes) affect the stability of proteins. The present study found that change in collective rotational dynamics of water in osmolyte solutions likely has a dominant effect on protein denaturation. According to THz spectroscopy analysis, osmolytes that stabilize proteins are accompanied by bound hydration water with slow dynamics, while the collective rotational dynamics of water is accelerated in the case of denaturant osmolytes. Among 15 osmolytes studied here, there is a good correlation between the change in mobility in terms of water rotational dynamics and the denaturation temperature of ribonuclease A. The changes in water dynamics due to osmolytes can be regarded as a pseudo-temperature-change, which agrees well with the change in protein denaturation temperature. These results indicate that the molecular dynamics of water around the protein is a key factor for protein denaturation.


Assuntos
Proteínas , Água , Simulação de Dinâmica Molecular , Desnaturação Proteica , Proteínas/química , Temperatura , Termodinâmica , Água/química
9.
J Phys Chem B ; 126(8): 1758-1767, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35193352

RESUMO

In some synthetic polymers used for medical applications, hydration water in the vicinity of the polymer chains is known to play an important role in biocompatibility and is referred to as intermediate water. The crystallization of water below 0 °C observed during thermal analysis has been considered as evidence of the presence of intermediate water. However, the origin and physicochemical properties of intermediate water have not yet been elucidated. In this study, as a typical biocompatible polymer, poly(ethylene oxide) and its hydration water were investigated with the use of terahertz time-domain spectroscopy and quasi-elastic neutron scattering. The obtained results prove the existence of a significant amount of mobile water that interacts with the polymer chains even when the water content is low at physiological temperatures.


Assuntos
Polietilenoglicóis , Água , Óxido de Etileno , Polietilenoglicóis/química , Polímeros/química , Temperatura , Água/química
10.
Langmuir ; 37(17): 5329-5338, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33881324

RESUMO

Hydration states are a crucial factor that affect the self-assembly and properties of soft materials and biomolecules. Although previous experiments have revealed that the hydration state strongly depends on the chemical structure of lipid molecules, the mechanisms at the molecular level remain unknown. Classical and density-functional tight-binding (DFTB) molecular dynamics (MD) simulations are employed to determine the mechanisms underlying dissimilar water dynamics between lipid membranes with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) head groups. The classical MD simulation shows that rotational relaxations of water are faster on the PE lipid than on the PC lipid, which is consistent with a previous experimental study using terahertz spectroscopy. Furthermore, DFTB-MD simulation of N(CH3)4+ and NH4+ ions, which correspond to the different head groups in PC and PE, respectively, shows qualitative agreement with the classical MD simulation. Remarkably, the PE lipids and the NH4+ ions break hydrogen bonds between water molecules in the secondary hydration shell. In contrast, the PC lipids and the N(CH3)4+ ions bind water molecules weakly in both the primary and secondary hydration shells and increase hydrogen bonds between water. Our atomistic simulations show that these changes in the hydrogen-bond network of water molecules cause the different rotational relaxation of water molecules between the two lipids.

11.
Angew Chem Int Ed Engl ; 60(28): 15214-15219, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675576

RESUMO

We report that user-defined DNA nanostructures, such as two-dimensional (2D) origamis and nanogrids, undergo a rapid higher-order folding transition, referred to as supra-folding, into three-dimensional (3D) compact structures (origamis) or well-defined µm-long ribbons (nanogrids), when they adsorb on a soft cationic substrate prepared by layer-by-layer deposition of polyelectrolytes. Once supra-folded, origamis can be switched back on the surface into their 2D original shape through addition of heparin, a highly charged anionic polyelectrolyte known as an efficient competitor of DNA-polyelectrolyte complexation. Orthogonal to DNA base-pairing principles, this reversible structural reconfiguration is also versatile; we show in particular that 1) it is compatible with various origami shapes, 2) it perfectly preserves fine structural details as well as site-specific functionality, and 3) it can be applied to dynamically address the spatial distribution of origami-tethered proteins.

12.
Langmuir ; 36(48): 14699-14709, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33232164

RESUMO

Although the transition between a bilayer and an interdigitated membrane of a surfactant and lipid has been widely known for long, its mechanism remains unclear. This study reveals the transition mechanism of a cationic surfactant, dioctadecyldimethylammonium chloride (DODAC), through experiments and theoretical calculations. Experimentally, the transition from the interdigitated to bilayer structure in the gel phase of DODAC is found to be induced by adding hydrophobic molecules such as n-alkane and its derivatives. Further addition induces a different transition to another bilayer phase. Our theory, considering the competition of the electrostatic interaction between cationic headgroups and the hydrophobic interaction emerging at the alkyl-chain ends exposed to water, reproduces these two phase transitions. In addition, changes in alkyl-chain packing in the membranes at these transitions are reproduced. The underlying mechanism is that the interdigitated membrane is formed at a small additive content due to electrostatic repulsion. As the energetic disadvantage with respect to the hydrophobic interaction becomes dominant as the content increases, the transition to the bilayer occurs at a specific content. The bilayer-bilayer transition at a higher content is induced by the change in the balance of these interactions. Based on a similar concept, we suggest the mechanism of the additive-induced bilayer-interdigitated transition of phospholipids, i.e., neutrally charged (zwitterionic) surfactants.

13.
Anal Chem ; 92(8): 5656-5660, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202108

RESUMO

Coherent anti-Stokes Raman scattering (CARS) imaging is widely used for imaging molecular vibrations inside cells and tissues. Lipid bilayers are potential analytes for CARS imaging due to their abundant CH2 vibrational bonds. However, identifying the plasma membrane is challenging since it possesses a thin structure and is closely apposed to lipid structures inside the cells. Since the plasma membrane provides the most prominent asymmetric location within cells, orientation sensitive sum-frequency generation (SFG) imaging is a promising technique for selective visualization of the plasma membrane labeled by a nonfluorescent and SFG-specific dye, Ap3, when using a CARS microscope system. In this study, we closely compare the characteristics of lipid bilayer imaging by dye-based SFG and CARS using giant vesicles (GVs) and N27 rat dopaminergic neural cells. As a result, we show that CARS imaging can be exploited for the visualization of whole lipid structures inside GVs and cells but is insufficient for identification of the plasma membrane, which instead can be achieved using dye-based SFG imaging. In addition, we demonstrate that these unique properties can be combined and applied to the live-cell tracking of intracellular lipid structures such as lipid droplets beneath the plasma membrane. Thus, multimodal multiphoton imaging through a combination of dye-based SFG and CARS can serve as a powerful chemical imaging tool to investigate lipid bilayers in GVs and living cells.


Assuntos
Corantes Fluorescentes/química , Bicamadas Lipídicas/análise , Imagem Molecular , Fótons , Animais , Células Cultivadas , Estrutura Molecular , Fosfatidilcolinas/química , Ratos , Análise Espectral Raman
14.
Phys Chem Chem Phys ; 22(10): 5418-5426, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-31904060

RESUMO

The relationship between the membrane bending modulus (κ) and compressibility modulus (KA) depends on the extent of coupling between the two monolayers (leaflets). Using neutron spin echo (NSE) spectroscopy, we investigate the effects of n-alkanes on the interleaflet coupling of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Structural studies with small-angle X-ray and neutron scattering (SAXS and SANS) showed that the bilayer thickness increased with increasing n-alkane length, while NSE suggested that the bilayers became softer. Additional measurements of the membrane thickness fluctuations with NSE suggested that the changes in elastic moduli were due to a decrease in coupling between the leaflets upon addition of the longer n-alkanes. The decreased coupling with elongating n-alkane length was explained based on the n-alkane distribution within the bilayers characterized by SANS measurement of bilayers composed of protiated DPPC and deuterated n-alkanes. A higher fraction of the incorporated long n-alkanes were concentrated at the central plane of the bilayers and decreased the physical interaction between the leaflets. Using NSE and SANS, we successfully correlated changes in the mesoscopic collective dynamics and microscopic membrane structure upon incorporation of n-alkanes.

15.
Colloids Surf B Biointerfaces ; 186: 110716, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865122

RESUMO

In the present work, dye-based sum-frequency generation (SFG) imaging using sodium 4-[4-(dibutylamino)phenylazo]benzenesulfonate (butyl orange, BO) as a new non-fluorescent specific azo dye is employed to monitor the morphological evolution of giant vesicles (GVs). After loading BO to the membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single-component GVs, the outermost membranes were clearly visualized using SFG microscopy, which provided images of the distinct outer and inner faces of the lipid bilayers. In addition, SFG-active vesicles were detected also inside the GVs, depending on the dye concentrations. The dye-based SFG imaging technique provided experimental evidence that these oligolamellar vesicles containing an SFG-active interior had been formed after BO loading. The formation process of the oligolamellar vesicles with inner SFG-active vesicles was successfully monitored, and their formation mechanism was discussed.


Assuntos
Compostos Azo/química , Corantes Fluorescentes/química , Fosfatidilcolinas/química , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
16.
J Chem Phys ; 150(6): 064904, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769992

RESUMO

We investigate the phase separation of a ternary lipid bilayer including n-alkane and construct the ternary phase diagram. When a certain proportion of a long n-alkane is mixed with a binary mixture of lipids, which exhibit the disordered liquid-crystalline phase and the ordered gel phase at room temperature, we observed the characteristic morphology of bilayers with phase separation. The ordered bilayer forms flat and rigid domains, which is connected or rimmed with flexible domains in the disordered phase. The asymmetric emergence of the phase separation region close to the ordered phase side is interpreted based on the almost equal distribution of the n-alkane to the ordered and disordered phase domains.

17.
Colloids Surf B Biointerfaces ; 176: 309-316, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641302

RESUMO

Liposomes composed of egg phosphatidylcholine and cholesterol were modified with the temperature-responsive polymer poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)), and exhibited reversible surface properties with temperature. Completely reversible liposome aggregation due to P(NIPAAm-co-DMAAm) hydration/dehydration was demonstrated over four successive cycles of heating and cooling. The P(NIPAAm-co-DMAAm) polymer was hydrated during cooling, which dispersed the liposomes. The rigidity of the liposomal membrane was one of the factors in the reversible aggregation, as was the modification density of the polymer on the liposomes. A low density on relatively rigid liposomes could maintain the polymer property of reversible hydrated layers below critical solution temperature (LCST) boundary. Above the LCST, temperature-responsive polymers could also transport negatively charged liposomes into cells. The reversible behavior of the temperature-responsive polymer-modified liposomes has not been reported previously and could enable new applications for switching deposit forms as alternative drug carriers.


Assuntos
Lipossomos/química , Temperatura , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Animais , Morte Celular , Sobrevivência Celular , Fluorescência , Camundongos , Tamanho da Partícula , Células RAW 264.7 , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
18.
Phys Chem Chem Phys ; 19(37): 25518-25526, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28900636

RESUMO

The reported layer spacings (dsmectic) of six homologues of mesogens exhibiting orthogonal smectic phases (SmE, SmB, and SmA phases) are reexamined. The slopes of the linear dependences on chain length (n, the number of carbon atoms in the hydrocarbon chain) are clearly categorized into two groups: 1.9 Å (CH2)-1 and 1.4 Å (CH2)-1. It is clarified that in the former the molecules take a rod-like form (rod-form; category-I), whereas in the latter the molecules are bent around the connection between the core and chain moieties (bent-form; category-II). The average relative positions of adjacent molecules within the smectic structures are deduced from the intercept of the linear functions of dsmectic against n. The relation between and the features of molecules belonging to the two categories are discussed for molecular design of functional smectic liquid crystals.

19.
Phys Chem Chem Phys ; 19(29): 19434-19441, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28718465

RESUMO

Single-crystal structural analyses and heat capacity measurements were performed on two Schiff base liquid crystal compounds, 5CBAA (4-chlorobenzylidene-4'-pentyloxyaniline) and 5ABCA (4-pentyloxybenzylidene-4'-chloroaniline). The alkyloxy-chain of a 5CBAA molecule was conformationally ordered in the crystal at room temperature. While that of 5ABCA was partially disordered in the room temperature phase but ordered in a low-temperature phase at 100 K. The structural phase transition involving the disordering of the conformation was observed at 107 K in the heat capacity of 5ABCA. Both compounds showed two liquid crystalline phases, SmBCr and SmAd. The net entropy change associated with the chain disordering was essentially the same in them despite the difference in the orientation of their central -CH[double bond, length as m-dash]N- moiety. The layer-spacings of SmBCr and SmAd phases were analyzed for their chain-length dependence in both series of mesogens (nCBAA and nABCA), as well as in the case of nBBAA (4-bromobenzylidene-4'-alkyloxyaniline). The results reveal that these smectic structures are composed of alternately stacked core- and chain-layers with an antiparallel arrangement of cores and a bent-form of molecules.

20.
J Chem Phys ; 146(7): 074503, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228039

RESUMO

A structural phase transition at 151.6 K of the title compound [bis(trans-4-butylcyclohexyl)methanol] is examined by X-ray diffraction crystallography, Fourier-transform infrared spectroscopy, and adiabatic calorimetry. A general consideration on possible superstructures indicates that a single modulation wave is sufficient to drive this cell-quintupling transition. The entropy of transition determined calorimetrically indicates that two conformations are dominant in the room-temperature phase in contrast to the fivefold disorder expected from the structure of the low-temperature phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA