Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
ACS Pharmacol Transl Sci ; 6(11): 1651-1658, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974623

RESUMO

The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys720) of the Krev interaction trapped 1 (KRIT1) protein. We show that the interaction of HNA with KRIT1 is highly specific, results in prolonged residence time of >8 h, and inhibits the Heart of glass 1 (HEG1)-KRIT1 protein-protein interaction (PPI). Screening of HNA derivatives identified analogs exhibiting similar binding modes as the parent fragment but faster target engagement and stronger inhibition activity. These results demonstrate that HNA is an efficient site-directing fragment with promise in developing HEG1-KRIT1 PPI inhibitors. Further, the aldimine chemistry, when coupled with templating effects that promote proximity, can produce a long-lasting reversible covalent modification of noncatalytic lysines.

2.
PLoS One ; 17(7): e0270930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802686

RESUMO

Our changing climate poses growing challenges for effective management of marine life, ocean ecosystems, and human communities. Which species are most vulnerable to climate change, and where should management focus efforts to reduce these risks? To address these questions, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Climate Science Strategy called for vulnerability assessments in each of NOAA's ocean regions. The Pacific Islands Vulnerability Assessment (PIVA) project assessed the susceptibility of 83 marine species to the impacts of climate change projected to 2055. In a standard Rapid Vulnerability Assessment framework, this project applied expert knowledge, literature review, and climate projection models to synthesize the best available science towards answering these questions. Here we: (1) provide a relative climate vulnerability ranking across species; (2) identify key attributes and factors that drive vulnerability; and (3) identify critical data gaps in understanding climate change impacts to marine life. The invertebrate group was ranked most vulnerable and pelagic and coastal groups not associated with coral reefs were ranked least vulnerable. Sea surface temperature, ocean acidification, and oxygen concentration were the main exposure drivers of vulnerability. Early Life History Survival and Settlement Requirements was the most data deficient of the sensitivity attributes considered in the assessment. The sensitivity of many coral reef fishes ranged between Low and Moderate, which is likely underestimated given that reef species depend on a biogenic habitat that is extremely threatened by climate change. The standard assessment methodology originally developed in the Northeast US, did not capture the additional complexity of the Pacific region, such as the diversity, varied horizontal and vertical distributions, extent of coral reef habitats, the degree of dependence on vulnerable habitat, and wide range of taxa, including data-poor species. Within these limitations, this project identified research needs to sustain marine life in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Concentração de Íons de Hidrogênio , Ilhas do Pacífico , Água do Mar
3.
Psychopharmacology (Berl) ; 239(9): 3009-3018, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841422

RESUMO

LB-102 is an N-methylated analogue of amisulpride under development to treat schizophrenia. LB-102 was evaluated in a Phase 1, double-blind, placebo-controlled, clinical study to evaluate safety and pharmacokinetics. This was a first-in-human study examining single and multiple doses of LB-102 administered orally in 64 healthy volunteers. Dosing in the single ascending dose (SAD) portion of the study was initially planned to be 50, 100, 200, and 400 mg, with doses in the multiple ascending dose (MAD) portion to be determined based on observations in the SAD portion. As a result of two cases of EPS (acute dystonia) at 200 mg in the MAD portion of the study, dosing of that arm was discontinued and doses for the remaining cohort were decreased to 150 mg/day. Dose escalation was guided by safety and plasma concentrations of LB-102 compared to a translational model. LB-102 was generally safe and well-tolerated, and clinical lab values were unremarkable at all doses, save for prolactin which was transiently elevated in the majority of subjects treated with LB-102; there were no clinical observations associated with the increases in prolactin elevation. There was evidence of transient QT interval prolongation at the 200 mg dose, none of which resulted in clinical observation or triggered stopping criteria. There were four instances of EPS (acute dystonia), typically associated with dopamine receptor occupancy in excess of 80%, one at 100 mg QD, one at 75 mg BID, and two at 100 mg BID. A phase 2 clinical study of LB-102 in schizophrenia patients with PANSS as primary endpoint is being planned.


Assuntos
Dopamina , Distonia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Prolactina , Serotonina
4.
ACS Med Chem Lett ; 13(4): 742-747, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450355

RESUMO

Botulinum neurotoxin A (BoNT/A) is a lethal toxin, which causes botulism, and is categorized as a bioterrorism threat, which causes flaccid paralysis and death. Botulinum A neurotoxicity is governed through its light chain (LC), a zinc metalloprotease. Pharmacological investigations aimed at negating BoNT/A's LC have typically looked to inhibitors that have been shown to inhibit the light chain's activity by reversible zinc chelation within its active site. This report outlines the first examples of nonpeptidic inhibitors of the BoNT/A LC that possess slow-binding kinetics, a needed logic to counteract the longevity of BoNT/A. Cyclopropane, alkyl, and alkenyl derivatives of 2,4-dichlorocinamic hydroxamic acid (DCHA) were shown to possess both one-step and two-step slow-binding kinetics. Structure-kinetic relationships (SKRs) were observed and were rationalized with the aid of docking models that predicted improved interactions with residues within a hydrophobic cleft adjacent to the active site.

5.
Pharm Res ; 39(11): 2937-2950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35313359

RESUMO

PURPOSE: Dysregulations of key signaling pathways in metabolic syndrome are multifactorial, eventually leading to cardiovascular events. Hyperglycemia in conjunction with dyslipidemia induces insulin resistance and provokes release of proinflammatory cytokines resulting in chronic inflammation, accelerated lipid peroxidation with further development of atherosclerotic alterations and diabetes. We have proposed a novel combinatorial approach using FDA approved compounds targeting IL-17a and DPP4 to ameliorate a significant portion of the clustered clinical risks in patients with metabolic syndrome. In our current research we have modeled the outcomes of metabolic syndrome treatment using two distinct drug classes. METHODS: Targets were chosen based on the clustered clinical risks in metabolic syndrome: dyslipidemia, insulin resistance, impaired glucose control, and chronic inflammation. Drug development platform, BIOiSIM™, was used to narrow down two different drug classes with distinct modes of action and modalities. Pharmacokinetic and pharmacodynamic profiles of the most promising drugs were modeling showing predicted outcomes of combinatorial therapeutic interventions. RESULTS: Preliminary studies demonstrated that the most promising drugs belong to DPP-4 inhibitors and IL-17A inhibitors. Evogliptin was chosen to be a candidate for regulating glucose control with long term collateral benefit of weight loss and improved lipid profiles. Secukinumab, an IL-17A sequestering agent used in treating psoriasis, was selected as a repurposed candidate to address the sequential inflammatory disorders that follow the first metabolic insult. CONCLUSIONS: Our analysis suggests this novel combinatorial therapeutic approach inducing DPP4 and Il-17a suppression has a high likelihood of ameliorating a significant portion of the clustered clinical risk in metabolic syndrome.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Interleucina-17 , Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Transdução de Sinais , Inflamação
7.
J Med Chem ; 64(17): 12893-12902, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34448571

RESUMO

This publication details the successful use of FBDD (fragment-based drug discovery) principles in the invention of a novel covalent Bruton's tyrosine kinase inhibitor, which ultimately became the Takeda Pharmaceuticals clinical candidate TAK-020. Described herein are the discovery of the fragment 5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one, the subsequent optimization of this hit molecule to the candidate, and synthesis and performance in pharmacodynamic and efficacy models along with direct biophysical comparison of TAK-020 with other clinical-level assets and the marketed drug Ibrutinib.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Artrite Experimental/tratamento farmacológico , Desenho de Fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Animais , Colágeno/toxicidade , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Humanos , Ratos
8.
Bioorg Med Chem ; 42: 116246, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130216

RESUMO

We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.


Assuntos
Desenvolvimento de Medicamentos , Corantes Fluorescentes/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade
9.
PLoS One ; 16(4): e0250780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909660

RESUMO

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.


Assuntos
COVID-19/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , COVID-19/metabolismo , Epitopos/imunologia , Evolução Molecular , Humanos , Evasão da Resposta Imune/imunologia , Modelos Moleculares , Testes de Neutralização/métodos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica/genética , Domínios Proteicos/genética , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
10.
J Med Chem ; 63(13): 6898-6908, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32482070

RESUMO

Clostridioides difficile infection (CDI) causes serious and sometimes fatal symptoms like diarrhea and pseudomembranous colitis. Although antibiotics for CDI exist, they are either expensive or cause recurrence of the infection due to their altering the colonic microbiota, which is necessary to suppress the infection. Here, we leverage a class of known membrane-targeting compounds that we previously showed to have broad inhibitory activity across multiple Clostridioides difficile strains while preserving the microbiome to develop an efficacious agent. A new series of salicylanilides was synthesized, and the most potent analog was selected through an in vitro inhibitory assay to evaluate its pharmacokinetic parameters and potency in a CDI mouse model. The results revealed reduced recurrence of CDI and diminished disturbance of the microbiota in mice compared to standard-of-care vancomycin, thus paving the way for novel therapy that can potentially target the cell membrane of C. difficile to minimize relapse in the recovering patient.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridioides difficile/fisiologia , Infecções por Clostridium/tratamento farmacológico , Salicilanilidas/química , Salicilanilidas/farmacologia , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Segurança , Salicilanilidas/farmacocinética , Salicilanilidas/uso terapêutico , Distribuição Tecidual
11.
ACS Omega ; 4(9): 14151-14154, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31497735

RESUMO

Benzamide antipsychotics such as amisulpride are dosed as racemates though efficacy is assumed to be mediated through S enantiomer binding to D2 receptors. At prescribed doses, the benzamides likely display polypharmacy since brain exposure should be sufficient to engage the 5-HT7 receptors, as well. Curiously, the studies herein reveal that racemic dosing is required to engage both targets since the D2 receptor has an almost 40-fold selectivity for the S enantiomer, while the 5-HT7 receptor has greater than 50-fold preference for the R enantiomer.

12.
J Am Chem Soc ; 141(26): 10489-10503, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31187995

RESUMO

Opioid abuse in the United States has been declared a national crisis and is exacerbated by an inexpensive, readily available, and illicit supply of synthetic opioids. Specifically, fentanyl and related analogues such as carfentanil pose a significant danger to opioid users due to their high potency and rapid acting depression of respiration. In recent years these synthetic opioids have become the number one cause of drug-related deaths. In our research efforts to combat the public health threat posed by synthetic opioids, we have developed monoclonal antibodies (mAbs) against the fentanyl class of drugs. The mAbs were generated in hybridomas derived from mice vaccinated with a fentanyl conjugate vaccine. Guided by a surface plasmon resonance (SPR) binding assay, we selected six hybridomas that produced mAbs with 10-11 M binding affinity for fentanyl, yet broad cross-reactivity with related fentanyl analogues. In mouse antinociception models, our lead mAb (6A4) could blunt the effects of both fentanyl and carfentanil in a dose-responsive manner. Additionally, mice pretreated with 6A4 displayed enhanced survival when subjected to fentanyl above LD50 doses. Pharmacokinetic analysis revealed that the antibody sequesters large amounts of these drugs in the blood, thus reducing drug biodistribution to the brain and other tissue. Lastly, the 6A4 mAb could effectively reverse fentanyl/carfentanil-induced antinociception comparable to the opioid antagonist naloxone, the standard of care drug for treating opioid overdose. While naloxone is known for its short half-life, we found the half-life of 6A4 to be approximately 6 days in mice, thus monoclonal antibodies could theoretically be useful in preventing renarcotization events in which opioid intoxication recurs following quick metabolism of naloxone. Our results as a whole demonstrate that monoclonal antibodies could be a desirable treatment modality for synthetic opioid overdose and possibly opioid use disorder.


Assuntos
Analgésicos Opioides/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor Nociceptiva/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Camundongos , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/química , Ressonância de Plasmônio de Superfície
13.
ACS Infect Dis ; 4(10): 1423-1431, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141624

RESUMO

The parasitic disease onchocerciasis is the second leading cause of preventable blindness, afflicting more than 18 million people worldwide. Despite an available treatment, ivermectin, and control efforts by the World Health Organization, onchocerciasis remains a burden in many regions. With an estimated 120 million people living in areas at risk of infection, efforts are now shifting from prevention to surveillance and elimination. The lack of a robust, point-of-care diagnostic for an active Onchocerca infection has been a limiting factor in these efforts. Previously, we reported the discovery of the biomarker N-acetyl-tyramine- O-glucuronide (NATOG) in human urine samples and its ability to track treatment progression between medicated patients relative to placebo; we also established its capability to monitor disease burden in a jird model. NATOG is a human-produced metabolite of tyramine, which itself is produced as a nematode neurotransmitter. The ability of NATOG to distinguish between active and past infection overcomes the limitations of antibody biomarkers and PCR methodologies. Lateral flow immunoassay (LFIA) diagnostics offer the versatility and simplicity to be employed in the field and are inexpensive enough to be utilized in large-scale screening efforts. Herein, we report the development and assessment of a NATOG-based urine LFIA for onchocerciasis, which accurately identified 85% of analyzed patient samples ( N = 27).


Assuntos
Imunoensaio/métodos , Doenças Negligenciadas/diagnóstico , Doenças Negligenciadas/urina , Onchocerca volvulus , Oncocercose/diagnóstico , Oncocercose/urina , Tiramina/análogos & derivados , Animais , Anticorpos Monoclonais Murinos/imunologia , Biomarcadores/urina , Confiabilidade dos Dados , Ouro/química , Humanos , Espectrometria de Massas , Nanopartículas Metálicas/química , Doenças Negligenciadas/prevenção & controle , Oncocercose/prevenção & controle , Testes Imediatos , Ressonância de Plasmônio de Superfície , Tiramina/imunologia , Tiramina/urina
14.
Bioorg Med Chem ; 26(14): 4234-4239, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037753

RESUMO

MYC is a key transcriptional regulator involved in cellular proliferation and has established roles in transcriptional elongation and initiation, microRNA regulation, apoptosis, and pluripotency. Despite this prevalence, functional chemical probes of MYC function at the protein level have been limited. Previously, we discovered 5a, that binds to MYC with potency and specificity, downregulates the transcriptional activities of MYC and shows efficacy in vivo. However, this scaffold posed intrinsic pharmacokinetic liabilities, namely, poor solubility that precluded biophysical interrogation. Here, we developed a screening platform based on field-effect transistor analysis (Bio-FET), surface plasmon resonance (SPR), and a microtumor formation assay to analyze a series of new compounds aimed at improving these properties. This blind SAR campaign has produced a new lead compound of significantly increased in vivo stability and solubility for a 40-fold increase in exposure. This probe represents a significant advancement that will not only enable biophysical characterization of this interaction and further SAR, but also contribute to advances in understanding of MYC biology.


Assuntos
Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/síntese química , Piridinas/química , Pirimidinas/síntese química , Pirimidinas/química , Solubilidade , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
15.
Ecology ; 99(6): 1419-1429, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29856493

RESUMO

Many ocean species exist within what are called marine metapopulations: networks of otherwise isolated local populations connected by the exchange of larval offspring. In order to manage these species as effectively as possible (e.g., by designing and implementing effective networks of marine protected areas), we must know how many offspring are produced within each local population (i.e., local demography), and where those offspring disperse (i.e., larval connectivity). Although there is much interest in estimating connectivity in the relatively simple sense of identifying the locations of spawning parents and their settling offspring, true measures of demographic connectivity that account for among-site variation in offspring production have been lacking. We combined detailed studies of local reproductive output and larval dispersal of a coral reef fish to quantify demographic connectivity within a regional metapopulation that included four widely spaced islands in the Bahamas. We present a new method for estimating demographic connectivity when the levels of dispersal among populations are inferred by the collection of genetically "tagged" offspring. We estimated that 13.3% of recruits returned to natal islands, on average (95% CI = 1.1-50.3%), that local retention was high on one of the islands (41%, 95% CI = 6.0-97.0%), and that larval connectivity was appreciable, even between islands 129 km apart (mean = 1.6%, 95% CI = 0.20-8.8%). Our results emphasize the importance of properly integrating measurements of production with measurements of connectivity. Had we not accounted for among-site variation in offspring production, our estimates of connectivity would have been inaccurate by a factor as much as 6.5. At a generational timescale, lifetime offspring production varied substantially (a fivefold difference among islands) and the importance of each island to long-term metapopulation growth was dictated by both larval production and connectivity. At the scale of our study (local populations inhabiting 5-ha reefs), the regional metapopulation could not grow without external input. However, an exploratory analysis simulating a network of four marine protected areas suggested that reserves of >65 ha each would ensure persistence of this network. Thus, integrating studies of larval connectivity and local demography hold promise for both managing and conserving marine metapopulations effectively.


Assuntos
Recifes de Corais , Peixes , Animais , Bahamas , Demografia , Larva , Dinâmica Populacional
16.
J Med Chem ; 60(12): 5209-5215, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28564542

RESUMO

Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.


Assuntos
Ácidos Borônicos/química , Diester Fosfórico Hidrolases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Nitrilas/química , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Bibliotecas de Moléculas Pequenas/química , Ressonância de Plasmônio de Superfície
17.
Bioorg Med Chem Lett ; 27(9): 1955-1961, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359790

RESUMO

A series of potent ALK5 inhibitors were designed using a SBDD approach and subsequently optimized to improve drug likeness. Starting with a 4-substituted quinoline screening hit, SAR was conducted using a ALK5 binding model to understand the binding site and optimize activity. The resulting inhibitors displayed excellent potency but were limited by high in vitro clearance in rat and human microsomes. Using a scaffold morphing strategy, these analogs were transformed into a related pyrazolo[4,3-b]pyridine series with improved ADME properties.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Linhagem Celular , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Piridinas/síntese química , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
18.
Mol Cancer Ther ; 16(7): 1269-1278, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341789

RESUMO

Receptor tyrosine kinase therapies have proven to be efficacious in specific cancer patient populations; however, a significant limitation of tyrosine kinase inhibitor (TKI) treatment is the emergence of resistance mechanisms leading to a transient, partial, or complete lack of response. Combination therapies using agents with synergistic activity have potential to improve response and reduce acquired resistance. Chemoreagent or TKI treatment can lead to increased expression of hepatocyte growth factor (HGF) and/or MET, and this effect correlates with increased metastasis and poor prognosis. Despite MET's role in resistance and cancer biology, MET TKI monotherapy has yielded disappointing clinical responses. In this study, we describe the biological activity of a selective, oral MET TKI with slow off-rate and its synergistic antitumor effects when combined with an anti-HGF antibody. We evaluated the combined action of simultaneously neutralizing HGF ligand and inhibiting MET kinase activity in two cancer xenograft models that exhibit autocrine HGF/MET activation. The combination therapy results in additive antitumor activity in KP4 pancreatic tumors and synergistic activity in U-87MG glioblastoma tumors. Pharmacodynamic characterization of biomarkers that correlate with combination synergy reveal that monotherapies induce an increase in the total MET protein, whereas combination therapy significantly reduces total MET protein levels and phosphorylation of 4E-BP1. These results hold promise that dual targeting of HGF and MET by combining extracellular ligand inhibitors with intracellular MET TKIs could be an effective intervention strategy for cancer patients who have acquired resistance that is dependent on total MET protein. Mol Cancer Ther; 16(7); 1269-78. ©2017 AACR.


Assuntos
Glioblastoma/tratamento farmacológico , Fator de Crescimento de Hepatócito/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/genética , Bibliotecas de Moléculas Pequenas/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Glioblastoma/genética , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Humanos , Camundongos , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
19.
ACS Med Chem Lett ; 7(9): 868-72, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27660693

RESUMO

Delta-5 desaturase (D5D) catalyzes the conversion from dihomo-gamma linoleic acid (DGLA) to arachidonic acid (AA). DGLA and AA are common precursors of anti- and pro-inflammatory eicosanoids, respectively, making D5D an attractive drug target for inflammatory-related diseases. Despite several reports on D5D inhibitors, their biochemical mechanisms of action (MOAs) remain poorly understood, primarily due to the difficulty in performing quantitative enzymatic analysis. Herein, we report a radioligand binding assay to overcome this challenge and characterized T-3364366, a thienopyrimidinone D5D inhibitor, by use of the assay. T-3364366 is a reversible, slow-binding inhibitor with a dissociation half-life in excess of 2.0 h. The long residence time was confirmed in cellular washout assays. Domain swapping experiments between D5D and D6D support [(3)H]T-3364366 binding to the desaturase domain of D5D. The present study is the first to demonstrate biochemical MOA of desaturase inhibitors, providing important insight into drug discovery of desaturase enzymes.

20.
Bioorg Med Chem Lett ; 26(17): 4334-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27460209

RESUMO

Using SBDD, a series of 4-amino-7-azaindoles were discovered as a novel class of Alk5 inhibitors that are potent in both Alk5 enzymatic and cellular assays. Subsequently a ring cyclization strategy was utilized to improve ADME properties leading to the discovery of a series of 1H-imidazo[4,5-c]pyridin-2(3H)-one drug like Alk5 inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Animais , Ciclização , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Pirimidinas/química , Pirróis/química , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA