Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Elife ; 132024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847388

RESUMO

Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data. This has led to the proposal that second polar body fusion following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show that FP occurring in the gonochoristic Aspidoscelis species A. marmoratus and A. arizonae results in genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying mechanism of restoration. Instead, a high-quality reference genome for A. marmoratus and analysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the widely held belief that females need to be isolated from males to undergo FP, females housed with conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous development. In addition, offspring arising from both fertilized eggs and parthenogenetic development were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity exposes the genetic load and explains the high rate of congenital malformations and embryonic mortality associated with FP in many species. Conversely, for animals that develop normally, FP could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single generation.


Assuntos
Lagartos , Partenogênese , Animais , Partenogênese/genética , Feminino , Lagartos/genética , Masculino , Meiose/genética , Homozigoto
2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746414

RESUMO

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

4.
Emerg Microbes Infect ; 13(1): 2359004, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38779718

RESUMO

As SARS-CoV-2 continues to spread and mutate, tracking the viral evolutionary trajectory and understanding the functional consequences of its mutations remain crucial. Here, we characterized the antibody evasion, ACE2 receptor engagement, and viral infectivity of the highly mutated SARS-CoV-2 Omicron subvariant BA.2.87.1. Compared with other Omicron subvariants, including EG.5.1 and the current predominant JN.1, BA.2.87.1 exhibits less immune evasion, reduced viral receptor engagement, and comparable infectivity in Calu-3 lung cells. Intriguingly, two large deletions (Δ15-26 and Δ136-146) in the N-terminal domain (NTD) of the spike protein facilitate subtly increased antibody evasion but significantly diminish viral infectivity. Collectively, our data support the announcement by the USA CDC that the public health risk posed by BA.2.87.1 appears to be low.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/virologia , COVID-19/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , Mutação , Testes de Neutralização
5.
Nat Commun ; 15(1): 4505, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802413

RESUMO

Avian influenza A virus H7N9 causes severe human infections with >30% fatality. Currently, there is no H7N9-specific prevention or treatment for humans. Here, from a 2013 H7N9 convalescent case in Hong Kong, we isolate four hemagglutinin (HA)-reactive monoclonal antibodies (mAbs), with three directed to the globular head domain (HA1) and one to the stalk domain (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralize H7N9 and protect female mice from lethal H7N9/AH1 challenge. Cryo-EM structures reveal that H7.HK1 and H7.HK2 bind to a ß14-centered surface and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on an adjacent protomer, thereby blocking viral entry. Sequence analysis indicates the lateral patch targeted by H7.HK1 and H7.HK2 to be conserved among influenza subtypes. Both H7.HK1 and H7.HK2 retain HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, consistent with structural data showing that the antigenic mutations during this timeframe occur at their epitope peripheries. The HA2-directed mAb H7.HK4 lacks neutralizing activity but when used in combination with H7.HK2 moderately augments female mouse protection. Overall, our data reveal antibodies to a conserved lateral HA1 supersite that confer neutralization, and when combined with a HA2-directed non-neutralizing mAb, augment protection.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Subtipo H7N9 do Vírus da Influenza A/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Feminino , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/prevenção & controle , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Camundongos Endogâmicos BALB C , Microscopia Crioeletrônica , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Epitopos/imunologia
6.
Cell Chem Biol ; 31(4): 632-657, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640902

RESUMO

Over four years have passed since the beginning of the COVID-19 pandemic. The scientific response has been rapid and effective, with many therapeutic monoclonal antibodies and small molecules developed for clinical use. However, given the ability for viruses to become resistant to antivirals, it is perhaps no surprise that the field has identified resistance to nearly all of these compounds. Here, we provide a comprehensive review of the resistance profile for each of these therapeutics. We hope that this resource provides an atlas for mutations to be aware of for each agent, particularly as a springboard for considerations for the next generation of antivirals. Finally, we discuss the outlook and thoughts for moving forward in how we continue to manage this, and the next, pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Pandemias , Antivirais/farmacologia , Antivirais/uso terapêutico
7.
PLoS Biol ; 22(3): e3002522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483887

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Chlorocebus aethiops , Humanos , Linhagem Celular , Células Vero , Peptídeos/farmacologia , Mamíferos
8.
J Med Virol ; 96(3): e29505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465748

RESUMO

SARS-CoV-2 antibody levels may serve as a correlate for immunity and could inform optimal booster timing. The relationship between antibody levels and protection from infection was evaluated in vaccinated individuals from the US National Basketball Association who had antibody levels measured at a single time point from September 12, 2021, to December 31, 2021. Cox proportional hazards models were used to estimate the risk of infection within 90 days of serologic testing by antibody level (<250, 250-800, and >800 AU/mL1 ), adjusting for age, time since last vaccine dose, and history of SARS-CoV-2 infection. Individuals were censored on date of booster receipt. The analytic cohort comprised 2323 individuals and was 78.2% male, 68.1% aged ≤40 years, and 56.4% vaccinated (primary series) with the Pfizer-BioNTech mRNA vaccine. Among the 2248 (96.8%) individuals not yet boosted at antibody testing, 77% completed their primary vaccine series 4-6 months before testing and the median (interquartile range) antibody level was 293.5 (interquartile range: 121.0-740.5) AU/mL. Those with levels <250 AU/mL (adj hazard ratio [HR]: 2.4; 95% confidence interval [CI]: 1.5-3.7) and 250-800 AU/mL (adj HR: 1.5; 95% CI: 0.98-2.4) had greater infection risk compared to those with levels >800 AU/mL. Antibody levels could inform individual COVID-19 risk and booster scheduling.


Assuntos
Basquetebol , COVID-19 , Vacinas , Humanos , Masculino , Feminino , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais
10.
Cell Host Microbe ; 32(3): 315-321.e3, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38377995

RESUMO

COVID-19 vaccines have recently been updated to specifically encode or contain the spike protein of the SARS-CoV-2 XBB.1.5 subvariant, but their immunogenicity in humans has yet to be fully evaluated and reported, particularly against emergent viruses that are rapidly expanding. We now report that administration of an updated monovalent mRNA vaccine booster (XBB.1.5 MV) to previously uninfected individuals boosted serum virus-neutralizing antibodies significantly against not only XBB.1.5 (27.0-fold increase) and EG.5.1 (27.6-fold increase) but also key emerging viruses such as HV.1, HK.3, JD.1.1, and JN.1 (13.3- to 27.4-fold increase). Individuals previously infected by an Omicron subvariant had the highest overall serum neutralizing titers (ID50 1,504-22,978) against all viral variants tested. While immunological imprinting was still evident with the updated vaccines, it was not nearly as severe as observed with the previously authorized bivalent BA.5 vaccine. Our findings strongly support the official recommendation to widely apply the updated COVID-19 vaccines.


Assuntos
Anticorpos Neutralizantes , Vacinas de mRNA , Humanos , Vacinas contra COVID-19 , Anticorpos Antivirais
11.
Environ Sci Technol ; 58(8): 3755-3765, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38285506

RESUMO

Carbon dioxide removal (CDR) is necessary for reaching net zero emissions, with studies showing potential deployment at multi-GtCO2 scale by 2050. However, excessive reliance on future CDR entails serious risks, including delayed emissions cuts, lock-in of fossil infrastructure, and threats to sustainability from increased resource competition. This study highlights an alternative pathway─prioritizing near-term non-CDR mitigation and minimizing CDR dependence. We impose a 1 GtCO2 limit on global novel CDR deployment by 2050, forcing aggressive early emissions reductions compared to 8-22 GtCO2 in higher CDR scenarios. Our results reveal that this low CDR pathway significantly decreases fossil fuel use, greenhouse gas (GHG) emissions, and air pollutants compared to higher CDR pathways. Driving rapid energy transitions eases pressures on land (including food cropland), water, and fertilizer resources required for energy and negative emissions. However, these sustainability gains come with higher mitigation costs from greater near-term low/zero-carbon technology deployment for decarbonization. Overall, this work provides strong evidence for maximizing non-CDR strategies such as renewables, electrification, carbon neutral/negative fuels, and efficiency now rather than betting on uncertain future CDR scaling. Ambitious near-term mitigation in this decade is essential to prevent lock-in and offer the best chance of successful deep decarbonization. Our constrained CDR scenario offers a robust pathway to achieving net zero emissions with limited sustainability impacts.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise
12.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177144

RESUMO

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Assuntos
Febre Lassa , Anticorpos de Domínio Único , Animais , Cobaias , Vírus Lassa , Anticorpos Antivirais , Anticorpos Neutralizantes
13.
Cell Stem Cell ; 31(2): 196-211.e6, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237586

RESUMO

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.


Assuntos
COVID-19 , Células-Tronco Pluripotentes , Humanos , SARS-CoV-2 , Neurônios Dopaminérgicos , Sistema Nervoso Central
14.
Circ Cardiovasc Qual Outcomes ; 17(1): e010031, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054286

RESUMO

BACKGROUND: Overall outcomes and the escalation rate for home hospital admissions for heart failure (HF) are not known. We report overall outcomes, predict escalation, and describe care provided after escalation among patients admitted to home hospital for HF. METHODS: Our retrospective analysis included all patients admitted for HF to 2 home hospital programs in Massachusetts between February 2020 and October 2022. Escalation of care was defined as transfer to an inpatient hospital setting (emergency department, inpatient medical unit) for at least 1 overnight stay. Unexpected mortality was defined as mortality excluding those who desired to pass away at home on admission or transitioned to hospice. We performed the least absolute shrinkage and selection operator logistic regression to predict escalation. RESULTS: We included 437 hospitalizations; patients had a median age of 80 (interquartile range, 69-89) years, 58.1% were women, and 64.8% were White. Of the cohort, 29.2% had reduced ejection fraction, 50.9% had chronic kidney disease, and 60.6% had atrial fibrillation. Median admission Get With The Guidelines HF score was 39 (interquartile range, 35-45; 1%-5% predicted inpatient mortality). Escalation occurred in 10.3% of hospitalizations. Thirty-day readmission occurred in 15.1%, 90-day readmission occurred in 33.8%, and 6-month mortality occurred in 11.5%. There was no unexpected mortality during home hospitalization. Patients who experienced escalation had significantly longer median length of stays (19 versus 7.5 days, P<0.001). The most common reason for escalation was progressive renal dysfunction (36.2%). A low mean arterial pressure at the time of admission to home hospital was the most significant predictor of escalation in the least absolute shrinkage and selection operator regression. CONCLUSIONS: About 1 in 10 home hospital patients with HF required escalation; none had unexpected mortality. Patients requiring escalation had longer length of stays. A low mean arterial pressure at the time of admission to home hospital was the most important predictor of escalation of care in the least absolute shrinkage and selection operator logistic regression model.


Assuntos
Insuficiência Cardíaca , Hospitalização , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Estudos Retrospectivos , Readmissão do Paciente , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/complicações , Hospitais
15.
Med Care ; 61(10): 681-688, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943523

RESUMO

BACKGROUND: Previsit decision aids (DAs) have promising outcomes in improving decisional quality, however, the cost to deploy a DA is not well defined, presenting a possible barrier to health system adoption. OBJECTIVES: We aimed to define the cost from a health system perspective of delivery of a DA. RESEARCH DESIGN: Observational cohort. PATIENTS AND METHODS: We interviewed or observed relevant personnel at 3 institutions with implemented DA distribution programs targeting men with prostate cancer. We then created process maps for DA delivery based on interview data. Cost determination was performed utilizing time-driven activity-based costing. Clinic visit length was measured on a subset of patients. Decisional quality measures were collected after the clinic visit. RESULTS: Total process time (minutes) for DA delivery was 10.14 (UCLA), 68 (Olive View-UCLA), and 25 (Vanderbilt). Total average costs (USD) per patient were $38.32 (UCLA), $59.96 (Olive View-UCLA), and $42.38 (Vanderbilt), respectively. Labor costs were the largest contributors to the cost of DA delivery. Variance analyses confirmed the cost efficiency of electronic health record (EHR) integration. We noted a shortening of clinic visit length when the DA was used, with high levels of decision quality. CONCLUSIONS: Time-driven activity-based costing is an effective approach to determining true inclusive costs of service delivery while also elucidating opportunities for cost containment. The absolute cost of delivering a DA to men with prostate cancer in various settings is much lower than the system costs of the treatments they consider. EHR integration streamlines DA delivery efficiency and results in substantial cost savings.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/terapia , Assistência Ambulatorial , Controle de Custos , Redução de Custos , Técnicas de Apoio para a Decisão
16.
Cell Rep Med ; 4(11): 101258, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909042

RESUMO

To combat the evolving SARS-CoV-2 Omicron variants, bivalent COVID-19 mRNA vaccines, encoding both ancestral and Omicron BA.5 spikes, have replaced monovalent vaccines in numerous countries. However, fourth doses of either vaccine result in similar neutralizing antibody titers against Omicron subvariants, raising the possibility of immunological imprinting. To address this, we investigate antibody responses in 72 participants given three doses of a monovalent mRNA vaccine, followed by a bivalent or monovalent booster, or those with breakthrough infections with BA.5 or BQ. Bivalent boosters do not show notably higher binding or virus-neutralizing titers against various SARS-CoV-2 variants compared to monovalent ones. However, breakthrough infections lead to significantly better neutralization of Omicron subvariants. Multiple analyses, including antigenic mapping, suggest that the ancestral spike in bivalent vaccines is causing deep immunological imprinting, preventing broadening of antibodies to the BA.5 component, thereby defeating its intended goal. Its removal from future vaccine compositions is therefore strongly recommended.


Assuntos
COVID-19 , Humanos , Vacinas Combinadas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Anticorpos Neutralizantes , Infecções Irruptivas
18.
Microbiol Resour Announc ; 12(12): e0093623, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991359

RESUMO

Phages MidnightRain and Gusanita, with siphovirus morphology, were isolated on Arthrobacter globiformis B-2979. MidnightRain's genome consists of 53,674 bp, encoding 101 putative genes and 1 tRNA, whereas Gusanita's genome is 42,742 bp, encoding 68 putative genes and 2 tRNAs.

19.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986867

RESUMO

The avian influenza A virus H7N9 causes severe human infections with more than 30% fatality despite the use of neuraminidase inhibitors. Currently there is no H7N9-specific prevention or treatment for humans. From a 2013 H7N9 convalescent case occurred in Hong Kong, we isolated four H7 hemagglutinin (HA)-reactive monoclonal antibodies (mAbs) by single B cell cloning, with three mAbs directed to the HA globular head domain (HA1) and one to the HA stem region (HA2). Two clonally related HA1-directed mAbs, H7.HK1 and H7.HK2, potently neutralized H7N9 and protected mice from a lethal H7N9/AH1 challenge. Cryo-EM structures revealed that H7.HK1 and H7.HK2 bind to a ß14-centered surface partially overlapping with the antigenic site D of HA1 and disrupt the 220-loop that makes hydrophobic contacts with sialic acid on the adjacent protomer, thus affectively blocking viral entry. The more potent mAb H7.HK2 retained full HA1 binding and neutralization capacity to later H7N9 isolates from 2016-2017, which is consistent with structural data showing that the antigenic mutations of 2016-2017 from the 2013 H7N9 only occurred at the periphery of the mAb epitope. The HA2-directed mAb H7.HK4 lacked neutralizing activity but protected mice from the lethal H7N9/AH1 challenge when engineered to mouse IgG2a enabling Fc effector function in mice. Used in combination with H7.HK2 at a suboptimal dose, H7.HK4 augmented mouse protection. Our data demonstrated an allosteric mechanism of mAb neutralization and augmented protection against H7N9 when a HA1-directed neutralizing mAb and a HA2-directed non-neutralizing mAb were combined.

20.
iScience ; 26(11): 108254, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026207

RESUMO

SARS-CoV-2 Omicron BA.2.75 has diversified into multiple subvariants with additional spike mutations and several are expanding in prevalence, particularly CH.1.1 and BN.1. Here, we investigated the viral receptor affinities and neutralization evasion properties of major BA.2.75 subvariants actively circulating in different regions worldwide. We found two distinct evolutionary pathways and three newly identified mutations that shaped the virological features of these subvariants. One phenotypic group exhibited a discernible decrease in viral receptor affinities, but a noteworthy increase in resistance to antibody neutralization, as exemplified by CH.1.1, which is apparently as resistant as XBB.1.5. In contrast, a second group demonstrated a substantial increase in viral receptor affinity but only a moderate increase in antibody evasion, as exemplified by BN.1. We also observed that all prevalent SARS-CoV-2 variants in the circulation presently, except for BN.1, exhibit profound levels of antibody evasion, suggesting this is the dominant determinant of virus transmissibility today.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA