Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Nitrogênio , Oxigênio , Plâncton
2.
Sci Rep ; 13(1): 22148, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092878

RESUMO

Climate change is increasing drought severity worldwide. Ocean discharges of municipal wastewater are a target for potable water recycling. Potable water recycling would reduce wastewater volume; however, the effect on mass nitrogen loading is dependent on treatment. In cases where nitrogen mass loading is not altered or altered minimally, this practice has the potential to influence spatial patterns in coastal eutrophication. We apply a physical-biogeochemical numerical ocean model to understand the influence of nitrogen management and potable wastewater recycling on net primary productivity (NPP), pH, and oxygen. We model several theoretical management scenarios by combining dissolved inorganic nitrogen (DIN) reductions from 50 to 85% and recycling from 0 to 90%, applied to 19 generalized wastewater outfalls in the Southern California Bight. Under no recycling, NPP, acidification, and oxygen loss decline with DIN reductions, which simulated habitat volume expansion for pelagic calcifiers and aerobic taxa. Recycling scenarios under intermediate DIN reduction show patchier areas of pH and oxygen loss with steeper vertical declines relative to a "no recycling" scenario. These patches are diminished under 85% DIN reduction across all recycling levels, suggesting nitrogen management lowers eutrophication risk even with concentrated discharges. These findings represent a novel application of ocean numerical models to investigate the regional effects of idealized outfall management on eutrophication. Additional work is needed to investigate more realistic outfall-specific water recycling and nutrient management scenarios and to contextualize the benefit of these management actions, given accelerating acidification and hypoxia from climate change.

3.
Mar Pollut Bull ; 170: 112669, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218030

RESUMO

Time series were compiled of terrestrial nitrogen, phosphorus, carbon, iron, and silica fluxes to the Southern California Bight (SCB), a U.S. West Coast embayment (Sutula et al., 2021). Monitoring data and model output were used to construct a baseline of inputs from direct point source (PS) discharges of wastewater treatment (WWT) effluent (via ocean outfalls) and PS, non-point and natural sources from coastal rivers. The baseline covers 1971-2017 for large WWT plants discharging >50 million gallons per day (MGD) and 1997-2017 for small WWT plants and rivers. PS are the dominant nitrogen source, with contributions of 70% of the total annual freshwater discharge and 95% of nitrogen loads. WWT upgrades have reduced organic nitrogen loads by 73% since 1971. Inorganic nitrogen loads have generally held constant (35-40 Gg y-1) for the large WWT plants. This baseline represents a period prior to extensive wastewater and stormwater recycling that is increasing in the region.


Assuntos
Nitrogênio , Rios , Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Águas Residuárias
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001604

RESUMO

Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical-biogeochemical model to quantify the link between terrestrial and atmospheric nutrients, organic matter, and carbon inputs and biogeochemical change in the coastal waters of the Southern California Bight. The model is forced by large-scale climatic drivers and a reconstruction of local inputs via rivers, wastewater outfalls, and atmospheric deposition; it captures the fine scales of ocean circulation along the shelf; and it is validated against a large collection of physical and biogeochemical observations. Local land-based and atmospheric inputs, enhanced by anthropogenic sources, drive a 79% increase in phytoplankton biomass, a 23% increase in primary production, and a nearly 44% increase in subsurface respiration rates along the coast in summer, reshaping the biogeochemistry of the Southern California Bight. Seasonal reductions in subsurface oxygen, pH, and aragonite saturation state, by up to 50 mmol m-3, 0.09, and 0.47, respectively, rival or exceed the global open-ocean oxygen loss and acidification since the preindustrial period. The biological effects of these changes on local fisheries, proliferation of harmful algal blooms, water clarity, and submerged aquatic vegetation have yet to be fully explored.


Assuntos
Carbono/metabolismo , Ecossistema , Eutrofização , Fitoplâncton/fisiologia , Pesqueiros , Humanos , Oceanos e Mares , Oxigênio/metabolismo , Água do Mar/química
5.
Data Brief ; 35: 106802, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665243

RESUMO

The Southern California Bight (SCB) is an upwelling-dominated, open embayment on the U.S. West Coast and receives discharges of anthropogenically-enhanced freshwater, nutrients, carbon, and other materials. These inputs include direct point sources discharged from wastewater treatment (WWT) plants via ocean outfalls and point, non-point, and natural sources discharged via coastal rivers. We assembled a daily time series over 1971-2017 of discharges from large WWT plants ≥ 50 million gallon per day (MGD) and 1997-2017 from small WWT plants and coastal rivers. Constituents include nitrogen, phosphorus, organic carbon, alkalinity, iron, and silica. Data from research studies, several government and non-government agency databases containing discharge monitoring reports, river flow gauges, and other collateral information were compiled to produce this dataset. Predictive models and expert analysis addressed unmonitored sources and data gaps. The time series of terrestrial discharge and fluxes are provided with location of coastal discharge point or tributary. The data are deposited in a repository found in Sutula et al. [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA