Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
2.
Adv Sci (Weinh) ; 11(16): e2308617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421139

RESUMO

The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, a first-in-class peptide-based radiotracer, [68Ga]Ga-AJ206, is developed that can be seamlessly integrated into the standard clinical workflow and is specifically designed to noninvasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). A bicyclic peptide, AJ206, is synthesized and exhibits high affinity to CD38 (KD: 19.1 ± 0.99 × 10-9 m) by surface plasmon resonance. Further, [68Ga]Ga-AJ206-PET shows high contrast within 60 min and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detects CD38 expression in cell line-derived xenografts, patient-derived xenografts (PDXs), and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantifies CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following all-trans retinoic acid (ATRA) therapy. In conclusion, [68Ga]Ga-AJ206 exhibits the salient features required for clinical translation, providing CD38-specific high-contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.


Assuntos
ADP-Ribosil Ciclase 1 , Radioisótopos de Gálio , Mieloma Múltiplo , Tomografia por Emissão de Pósitrons , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/diagnóstico por imagem , Animais , ADP-Ribosil Ciclase 1/metabolismo , Camundongos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Modelos Animais de Doenças , Peptídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral
3.
Nucl Med Biol ; 128-129: 108880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330637

RESUMO

Patients with HER2-positive and triple negative breast cancer (TNBC) are associated with increased risk to develop metastatic disease including reoccurring disease that is resistant to standard and targeted therapies. The αVß3 has been implicated in BC including metastatic disease. The aims of this study were to investigate the potential of αVß3-targeted peptides to deliver radioactive payloads to BC tumors expressing αVß3 on the tumor cells or limited to the tumors' neovascular. Additionally, we aimed to assess the pharmacokinetic profile of the targeted α-particle therapy (TAT) agent [225Ac]Ac-DOTA-cRGDfK dimer peptide and the in vivo generated decay daughters. The expression of αVß3 in a HER2-positive and a TNBC cell line were evaluated using western blot analysis. The pharmacokinetics of [111In]In-DOTA-cRGDfK dimer, a surrogate for the TAT-agent, was evaluated in subcutaneous mouse tumor models. The pharmacokinetic of the TAT-agent [225Ac]Ac-DOTA-cRGDfK dimer and its decay daughters were evaluated in healthy mice. Selective uptake of [111In]In-DOTA-cRGDfK dimer was shown in subcutaneous tumor models using αVß3-positive tumor cells as well as αVß3-negative tumor cells where the expression is limited to the neovasculature. Pharmacokinetic studies demonstrated rapid accumulation in the tumors with clearance from non-target organs. Dosimetric analysis of [225Ac]Ac-DOTA-cRGDfK dimer showed the highest radiation absorbed dose to the kidneys, which included the contributions from the free in vivo generated decay daughters. This study shows the potential of delivering radioactive payloads to BC tumors that have αVß3 expression on the tumor cells as well as limited expression to the neovascular of the tumor. Furthermore, this work determines the radiation absorbed doses to normal organs/tissues and identified key organs that act as suppliers and receivers of the actinium-225 free in vivo generated α-particle-emitting decay daughters.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Oligopeptídeos/farmacocinética , Peptídeos , Integrina alfaVbeta3/metabolismo
4.
Med Phys ; 51(1): 637-649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37558637

RESUMO

BACKGROUND: Predicting biological responses to mixed radiation types is of considerable importance when combining radiation therapies that use multiple radiation types and delivery regimens. These may include the use of both low- and high-linear energy transfer (LET) radiations. A number of theoretical models have been developed to address this issue. However, model predictions do not consistently match published experimental data for mixed radiation exposures. Furthermore, the models are often computationally intensive. Accordingly, there is a need for efficient analytical models that can predict responses to mixtures of low- and high-LET radiations. Additionally, a general formalism to calculate equieffective dose (EQDX) for mixed radiations is needed. PURPOSE: To develop a computationally efficient analytical model that can predict responses to complex mixtures of low- and high-LET radiations as a function of either absorbed dose or EQDX. METHODS: The Zaider-Rossi model (ZRM) was modified by replacing the geometric mean of the quadratic coefficients in the interaction term with the arithmetic mean. This modified ZRM model (mZRM) was then further generalized to any number of radiation types and its validity was tested against published experimental observations. Comparisons between the predictions of the ZRM and mZRM, and other models, were made using two and three radiation types. In addition, a generalized formalism for calculating EQDX for mixed radiations was developed within the context of mZRM and validated with published experimental results. RESULTS: The predictions of biological responses to mixed-LET radiations calculated with the mZRM are in better agreement with experimental observations than ZRM, especially when high- and low-LET radiations are mixed. In these situations, the ZRM overestimated the surviving fraction. Furthermore, the EQDX calculated with mZRM are in better agreement with experimental observations. CONCLUSION: The mZRM is a computationally efficient model that can be used to predict biological response to mixed radiations that have low- and high-LET characteristics. Importantly, interaction terms are retained in the calculation of EQDX for mixed radiation exposures within the mZRM framework. The mZRM has application in a wide range of radiation therapies, including radiopharmaceutical therapy.


Assuntos
Exposição à Radiação , Relação Dose-Resposta à Radiação , Eficiência Biológica Relativa
5.
J Nucl Med ; 65(1): 125-131, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37884334

RESUMO

Implementation of radiopharmaceutical therapy dosimetry varies depending on the clinical application, dosimetry protocol, software, and ultimately the operator. Assessing clinical dosimetry accuracy and precision is therefore a challenging task. This work emphasizes some pitfalls encountered during a structured analysis, performed on a single-patient dataset consisting of SPECT/CT images by various participants using a standard protocol and clinically approved commercial software. Methods: The clinical dataset consisted of the dosimetric study of a patient administered with [177Lu]Lu-DOTATATE at Tygerberg Hospital, South Africa, as a part of International Atomic Energy Agency-coordinated research project E23005. SPECT/CT images were acquired at 5 time points postinjection. Patient and calibration images were reconstructed on a workstation, and a calibration factor of 122.6 Bq/count was derived independently and provided to the participants. A standard dosimetric protocol was defined, and PLANETDose (version 3.1.1) software was installed at 9 centers to perform the dosimetry of 3 treatment cycles. The protocol included rigid image registration, segmentation (semimanual for organs, activity threshold for tumors), and dose voxel kernel convolution of activity followed by absorbed dose (AD) rate integration to obtain the ADs. Iterations of the protocol were performed by participants individually and within collective training, the results of which were analyzed for dosimetric variability, as well as for quality assurance and error analysis. Intermediary checkpoints were developed to understand possible sources of variation and to differentiate user error from legitimate user variability. Results: Initial dosimetric results for organs (liver and kidneys) and lesions showed considerable interoperator variability. Not only was the generation of intermediate checkpoints such as total counts, volumes, and activity required, but also activity-to-count ratio, activity concentration, and AD rate-to-activity concentration ratio to determine the source of variability. Conclusion: When the same patient dataset was analyzed using the same dosimetry procedure and software, significant disparities were observed in the results despite multiple sessions of training and feedback. Variations due to human error could be minimized or avoided by performing intensive training sessions, establishing intermediate checkpoints, conducting sanity checks, and cross-validating results across physicists or with standardized datasets. This finding promotes the development of quality assurance in clinical dosimetry.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Radiometria/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Fígado
6.
J Appl Clin Med Phys ; 25(2): e14157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820316

RESUMO

Radioembolization using Yttrium-90 (90 Y) microspheres is widely used to treat primary and metastatic liver tumors. The present work provides minimum practice guidelines for establishing and supporting such a program. Medical physicists play a key role in patient and staff safety during these procedures. Products currently available are identified and their properties and suppliers summarized. Appropriateness for use is the domain of the treating physician. Patient work up starts with pre-treatment imaging. First, a mapping study using Technetium-99m (Tc-99m ) is carried out to quantify the lung shunt fraction (LSF) and to characterize the vascular supply of the liver. An MRI, CT, or a PET-CT scan is used to obtain information on the tumor burden. The tumor volume, LSF, tumor histology, and other pertinent patient characteristics are used to decide the type and quantity of 90 Y to be ordered. On the day of treatment, the appropriate dose is assayed using a dose calibrator with a calibration traceable to a national standard. In the treatment suite, the care team led by an interventional radiologist delivers the dose using real-time image guidance. The treatment suite is posted as a radioactive area during the procedure and staff wear radiation dosimeters. The treatment room, patient, and staff are surveyed post-procedure. The dose delivered to the patient is determined from the ratio of pre-treatment and residual waste exposure rate measurements. Establishing such a treatment modality is a major undertaking requiring an institutional radioactive materials license amendment complying with appropriate federal and state radiation regulations and appropriate staff training commensurate with their respective role and function in the planning and delivery of the procedure. Training, documentation, and areas for potential failure modes are identified and guidance is provided to ameliorate them.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microesferas , Neoplasias Hepáticas/radioterapia , Radioisótopos de Ítrio/uso terapêutico , Embolização Terapêutica/métodos , Física
7.
J Nucl Med ; 65(2): 245-251, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38124163

RESUMO

α-particle emitters are emerging as a potent modality for disseminated cancer therapy because of their high linear energy transfer and localized absorbed dose profile. Despite great interest and pharmaceutical development, there is scant information on the distribution of these agents at the scale of the α-particle pathlength. We sought to determine the distribution of clinically approved [223Ra]RaCl2 in bone metastatic castration-resistant prostate cancer at this resolution, for the first time to our knowledge, to inform activity distribution and dose at the near-cell scale. Methods: Biopsy specimens and blood were collected from 7 patients 24 h after administration. 223Ra activity in each sample was recorded, and the microstructure of biopsy specimens was analyzed by micro-CT. Quantitative autoradiography and histopathology were segmented and registered with an automated procedure. Activity distributions by tissue compartment and dosimetry calculations based on the MIRD formalism were performed. Results: We revealed the activity distribution differences across and within patient samples at the macro- and microscopic scales. Microdistribution analysis confirmed localized high-activity regions in a background of low-activity tissue. We evaluated heterogeneous α-particle emission distribution concentrated at bone-tissue interfaces and calculated spatially nonuniform absorbed-dose profiles. Conclusion: Primary patient data of radiopharmaceutical therapy distribution at the small scale revealed that 223Ra uptake is nonuniform. Dose estimates present both opportunities and challenges to enhance patient outcomes and are a first step toward personalized treatment approaches and improved understanding of α-particle radiopharmaceutical therapies.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Compostos Radiofarmacêuticos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Autorradiografia , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário
8.
Molecules ; 28(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630410

RESUMO

Prostate-specific membrane antigen (PSMA)-based low-molecular-weight agents using beta(ß)-particle-emitting radiopharmaceuticals is a new treatment paradigm for patients with metastatic castration-resistant prostate cancer. Although results have been encouraging, there is a need to improve the tumor residence time of current PSMA-based radiotherapeutics. Albumin-binding moieties have been used strategically to enhance the tumor uptake and retention of existing PSMA-based investigational agents. Previously, we developed a series of PSMA-based, ß-particle-emitting, low-molecular-weight compounds. From this series, 177Lu-L1 was selected as the lead agent because of its reduced off-target radiotoxicity in preclinical studies. The ligand L1 contains a PSMA-targeting Lys-Glu urea moiety with an N-bromobenzyl substituent in the ε-amino group of Lys. Here, we structurally modified 177Lu-L1 to improve tumor targeting using two known albumin-binding moieties, 4-(p-iodophenyl) butyric acid moiety (IPBA) and ibuprofen (IBU), and evaluated the effects of linker length and composition. Six structurally related PSMA-targeting ligands (Alb-L1-Alb-L6) were synthesized based on the structure of 177Lu-L1. The ligands were assessed for in vitro binding affinity and were radiolabeled with 177Lu following standard protocols. All 177Lu-labeled analogs were studied in cell uptake and selected cell efficacy studies. In vivo pharmacokinetics were investigated by conducting tissue biodistribution studies for 177Lu-Alb-L2-177Lu-Alb-L6 (2 h, 24 h, 72 h, and 192 h) in male NSG mice bearing human PSMA+ PC3 PIP and PSMA- PC3 flu xenografts. Preliminary therapeutic ratios of the agents were estimated from the area under the curve (AUC0-192h) of the tumors, blood, and kidney uptake values. Compounds were obtained in >98% radiochemical yields and >99% purity. PSMA inhibition constants (Kis) of the ligands were in the ≤10 nM range. The long-linker-based agents, 177Lu-Alb-L4 and 177Lu-Alb-L5, displayed significantly higher tumor uptake and retention (p < 0.001) than the short-linker-bearing 177Lu-Alb-L2 and 177Lu-Alb-L3 and a long polyethylene glycol (PEG) linker-bearing agent, 177Lu-Alb-L6. The area under the curve (AUC0-192h) of the PSMA+ PC3 PIP tumor uptake of 177Lu-Alb-L4 and 177Lu-Alb-L5 were >4-fold higher than 177Lu-Alb-L2, 177Lu-Alb-L3, and 177Lu-Alb-L6, respectively. Also, the PSMA+ PIP tumor uptake (AUC0-192h) of 177Lu-Alb-L2 and 177Lu-Alb-L3 was ~1.5-fold higher than 177Lu-Alb-L6. However, the lowest blood AUC0-192h and kidney AUC0-192h were associated with 177Lu-Alb-L6 from the series. Consequently, 177Lu-Alb-L6 displayed the highest ratios of AUC(tumor)-to-AUC(blood) and AUC(tumor)-to-AUC(kidney) values from the series. Among the other agents, 177Lu-Alb-L4 demonstrated a nearly similar ratio of AUC(tumor)-to-AUC(blood) as 177Lu-Alb-L6. The tumor-to-blood ratio was the dose-limiting therapeutic ratio for all of the compounds. Conclusions: 177Lu-Alb-L4 and 177Lu-Alb-L6 showed high tumor uptake in PSMA+ tumors and tumor-to-blood ratios. The data suggest that linker length and composition can be modulated to generate an optimized therapeutic agent.


Assuntos
Albuminas , Partículas beta , Humanos , Masculino , Animais , Camundongos , Ligantes , Distribuição Tecidual , Ácido Butírico
9.
Int J Radiat Oncol Biol Phys ; 117(4): 1028-1037, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331568

RESUMO

PURPOSE: In this study we determined the dose-independent relative biological effectiveness (RBE2) of bone marrow for an anti-HER2/neu antibody labeled with the alpha-particle emitter actinium 225 (225Ac). Hematologic toxicity is often a consequence of radiopharmaceutical therapy (RPT) administration, and dosimetric guidance to the bone marrow is required to limit toxicity. METHODS AND MATERIALS: Female neu/N transgenic mice (MMTV-neu) were intravenously injected with 0 to 16.65 kBq of the alpha-particle emitter labeled antibody, 225Ac-DOTA-7.16.4, and euthanized at 1 to 9 days after treatment. Complete blood counts were performed. Femurs and tibias were collected, and bone marrow was isolated from 1 femur and tibia and counted for radioactivity. Contralateral intact femurs were fixed, decalcified, and assessed by histology. Marrow cellularity was the biologic endpoint selected for RBE2 determination. For the reference radiation, both femurs of the mice were photon irradiated with 0 to 5 Gy using a small animal radiation research platform. RESULTS: Response as measured by cellularity for the alpha-particle emitter RPT (αRPT) RPT and the external beam radiation therapy were linear and linear quadratic, respectively, as a function of absorbed dose. The resulting dose-independent RBE2 for bone marrow was 6. CONCLUSIONS: As αRPT gains prominence, preclinical studies evaluating RBE in vivo will be important in relating to human experience with beta-particle emitter RPT. Such normal tissue RBE evaluations will help mitigate unexpected toxicity in αRPT.

10.
Nanomaterials (Basel) ; 13(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368273

RESUMO

Recent studies have highlighted the potential of smart radiotherapy biomaterials (SRBs) for combining radiotherapy and immunotherapy. These SRBs include smart fiducial markers and smart nanoparticles made with high atomic number materials that can provide requisite image contrast during radiotherapy, increase tumor immunogenicity, and provide sustained local delivery of immunotherapy. Here, we review the state-of-the-art in this area of research, the challenges and opportunities, with a focus on in situ vaccination to expand the role of radiotherapy in the treatment of both local and metastatic disease. A roadmap for clinical translation is outlined with a focus on specific cancers where such an approach is readily translatable or will have the highest impact. The potential of FLASH radiotherapy to synergize with SRBs is discussed including prospects for using SRBs in place of currently used inert radiotherapy biomaterials such as fiducial markers, or spacers. While the bulk of this review focuses on the last decade, in some cases, relevant foundational work extends as far back as the last two and half decades.

11.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37214794

RESUMO

PURPOSE: The limited availability of molecularly targeted low-molecular-weight imaging agents for monitoring multiple myeloma (MM)-targeted therapies has been a significant challenge in the field. In response, we developed [68Ga]Ga-AJ206, a peptide-based radiotracer that can be seamlessly integrated into the standard clinical workflow and is specifically designed to non-invasively quantify CD38 levels and pharmacodynamics by positron emission tomography (PET). EXPERIMENTAL DESIGN: We synthesized a high-affinity binder for quantification of CD38 levels. Affinity was tested using surface plasmon resonance, and In vitro specificity was evaluated using a gallium-68-labeled analog. Distribution, pharmacokinetics, and CD38 specificity of the radiotracer were assessed in MM cell lines and in primary patient-derived myeloma cells and xenografts (PDX) with cross-validation by flow cytometry and immunohistochemistry. Furthermore, we investigated the radiotracer's potential to quantify CD38 pharmacodynamics induced by all-trans retinoic acid therapy (ATRA). RESULTS: [68Ga]Ga-AJ206 exhibited high CD38 binding specificity (KD: 19.1±0.99 nM) and CD38-dependent In vitro binding. [68Ga]Ga-AJ206-PET showed high contrast within 60 minutes and suitable absorbed dose estimates for clinical use. Additionally, [68Ga]Ga-AJ206 detected CD38 expression in xenografts, PDXs and disseminated disease models in a manner consistent with flow cytometry and immunohistochemistry findings. Moreover, [68Ga]Ga-AJ206-PET successfully quantified CD38 pharmacodynamics in PDXs, revealing increased CD38 expression in the tumor following ATRA therapy. CONCLUSIONS: [68Ga]Ga-AJ206 exhibited the salient features required for clinical translation, providing CD38-specific high contrast images in multiple models of MM. [68Ga]Ga-AJ206-PET could be useful for quantifying total CD38 levels and pharmacodynamics during therapy to evaluate approved and new therapies in MM and other diseases with CD38 involvement.

12.
J Transl Med ; 21(1): 144, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829143

RESUMO

BACKGROUND: Alpha-emitter radiopharmaceutical therapy (αRPT) has shown promising outcomes in metastatic disease. However, the short range of the alpha particles necessitates dosimetry on a near-cellular spatial scale. Current knowledge on cellular dosimetry is primarily based on in vitro experiments using cell monolayers. The goal of such experiments is to establish cell sensitivity to absorbed dose (AD). However, AD cannot be measured directly and needs to be modeled. Current models, often idealize cells as spheroids in a regular grid (geometric model), simplify binding kinetics and ignore the stochastic nature of radioactive decay. It is unclear what the impact of such simplifications is, but oversimplification results in inaccurate and non-generalizable results, which hampers the rigorous study of the underlying radiobiology. METHODS: We systematically mapped out 3D cell geometries, clustering behavior, agent binding, internalization, and subcellular trafficking kinetics for a large cohort of live cells under representative experimental conditions using confocal microscopy. This allowed for realistic Monte Carlo-based (micro)dosimetry. Experimentally established surviving fractions of the HER2 + breast cancer cell line treated with a 212Pb-labelled anti-HER2 conjugate or external beam radiotherapy, anchored a rigorous statistical approach to cell sensitivity and relative biological effectiveness (RBE) estimation. All outcomes were compared to a reference geometric model, which allowed us to determine which aspects are crucial model components for the proper study of the underlying radiobiology. RESULTS: In total, 567 cells were measured up to 26 h post-incubation. Realistic cell clustering had a large (2x), and cell geometry a small (16.4% difference) impact on AD, compared to the geometric model. Microdosimetry revealed that more than half of the cells do not receive any dose for most of the tested conditions, greatly impacting cell sensitivity estimates. Including these stochastic effects in the model, resulted in significantly more accurate predictions of surviving fraction and RBE (permutation test; p < .01). CONCLUSIONS: This comprehensive integration of the biological and physical aspects resulted in a more accurate method of cell survival modelling in αRPT experiments. Specifically, including realistic stochastic radiation effects and cell clustering behavior is crucial to obtaining generalizable radiobiological parameters.


Assuntos
Microscopia , Compostos Radiofarmacêuticos , Humanos , Eficiência Biológica Relativa , Tolerância a Radiação , Radiobiologia , Radiometria/métodos , Método de Monte Carlo
13.
Clin Cancer Res ; 29(3): 581-591, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449662

RESUMO

PURPOSE: Immune checkpoint therapy (ICT) is currently ineffective in a majority of patients. Tumor drug exposure measurements can provide vital insights into mechanisms involved in the resistance of solid tumors to those therapeutics; however, tools to quantify in situ drug exposure are few. We have investigated the potential of programmed death-ligand 1 (PD-L1) pharmacodynamics, quantified using PET, to inform on the tumor exposure of anti-PD-L1 (aPD-L1) therapeutics. EXPERIMENTAL DESIGN: To noninvasively quantify PD-L1 levels, we first developed a novel peptide-based gallium-68-labeled binder, [68Ga]Ga-DK223, and evaluated its in vivo distribution, pharmacokinetics, and PD-L1 specificity in preclinical models of triple-negative breast cancer and urothelial carcinoma with variable PD-L1 expression. We then quantified baseline and accessible PD-L1 levels in tumors as a noninvasive pharmacodynamic measure to assess tumor exposure to two aPD-L1 antibodies (avelumab and durvalumab). RESULTS: DK223 exhibited a KD of 1.01±0.83 nmol/L for PD-L1 and inhibited the PD-1:PD-L1 interaction in a dose-dependent manner. [68Ga]Ga-DK223 provides high-contrast PET images within 60 minutes of administration and detects PD-L1 in an expression-dependent manner in xenograft models. PD-L1 pharmacodynamics measured using [68Ga]Ga-DK223-PET revealed that avelumab and durvalumab had similar exposure early during therapy, but only durvalumab exhibited sustained exposure at the tumor. CONCLUSIONS: [68Ga]Ga-DK223 detected variable PD-L1 levels and exhibited salient features required for clinical translation. [68Ga]Ga-DK223-PET could be useful for quantifying total PD-L1 levels at baseline and accessible PD-L1 levels during therapy to understand drug exposure at the tumor, thus supporting its use for guiding and optimizing ICT.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Tomografia por Emissão de Pósitrons/métodos , Antígeno B7-H1/metabolismo , Peptídeos
14.
Int J Radiat Oncol Biol Phys ; 115(2): 518-528, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926719

RESUMO

PURPOSE: We have determined the in vivo relative biological effectiveness (RBE) of an alpha-particle-emitting radiopharmaceutical therapeutic agent (212Pb-labeled anti-HER2/neu antibody) for the bone marrow, a potentially dose-limiting normal tissue. METHODS AND MATERIALS: The RBE was measured in mice using femur marrow cellularity as the biological endpoint. External beam radiation therapy (EBRT), delivered by a small-animal radiation research platform was used as the reference radiation. Alpha-particle emissions were delivered by 212Bi after the decay of its parent nuclide 212Pb, which was conjugated onto an anti-HER2/neu antibody. The alpha-particle absorbed dose to the marrow after an intravenous administration (tail vein) of 122.1 to 921.3 kBq 212Pb-TCMC-7.16.4 was calculated. The mice were sacrificed at 0 to 7 days after treatment and the radioactivity from the femur bone marrow was measured. Changes in marrow cellularity were assessed by histopathology. RESULTS: The dose response for EBRT and 212Pb-anti-HER2/neu antibody were linear-quadratic and linear, respectively. On transforming the EBRT dose-response relationship into a linear relationship using the equivalent dose in 2-Gy fractions of external beam radiation formalism, we obtained an RBE (denoted RBE2) of 6.4, which is independent of cellularity and absorbed dose. CONCLUSIONS: Because hematologic toxicity is dose limiting in almost all antibody-based RPT, in vivo measurements of RBE are important in helping identify an initial administered activity in phase 1 escalation trials. Applying the RBE2 and assuming typical antibody clearance kinetics (biological half-life of 48 hours), using a modified blood-based dosimetry method, an average administered activity of approximately 185.5 MBq (5.0 mCi) per patient could be administered before hematologic toxicity is anticipated.


Assuntos
Medula Óssea , Chumbo , Animais , Camundongos , Eficiência Biológica Relativa , Radiometria , Anticorpos Monoclonais/uso terapêutico
15.
Am J Clin Oncol ; 45(6): 233-242, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507413

RESUMO

OBJECTIVES: This practice parameter (PP) for Lutetium-177 (Lu-177) DOTATATE peptide receptor radionuclide therapy (PRRT) aims to guide authorized users in selection of appropriate adult candidates with gastroeneropancreatic neuroendocrine tumors (GEP-NETs) from foregut, midgut, and hindgut. The essential selection criteria include somatostatin receptor-positive GEP-NETs, which are usually inoperable and progressed despite standard therapy. Lu-177 DOTATATE is a radiopharmaceutical with high avidity for somatostatin receptors that are overexpressed by these tumors. This document ensures safe handling of Lu-177 DOTATATE by the authorized users and safe management of affected patients. METHODS: The document was developed according to the systematic process developed by the American College of Radiology (ACR) and described on the ACR Web site (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards). The PP development was led by 2 ACR Committees on Practice Parameters (Nuclear Medicine and Molecular Imaging and Radiation Oncology) collaboratively with the American College of Nuclear Medicine, American Society of Radiation Oncology, and Society of Nuclear Medicine and Molecular Imaging. RESULTS: The Lu-177 DOTATATE PP reviewed pharmacology, indications, adverse effects, personnel qualifications, and required clinical evaluation before starting the treatment, as well as the recommended posttherapy monitoring, quality assurance, documentation, and appropriate radiation safety instructions provided in written form and explained to the patients. CONCLUSIONS: Lu-177 DOTATATE is available for therapy of inoperable and/or advanced GEP-NETs when conventional therapy had failed. It can reduce tumor size, improve symptoms, and increase the progression free survival. The PP document provides clinical guidance for authorized users to assure an appropriate, consistent, and safe practice of Lu-177 DOTATATE.


Assuntos
Lutécio , Tumores Neuroendócrinos , Adulto , Humanos , Lutécio/uso terapêutico , Tumores Neuroendócrinos/radioterapia , Tomografia por Emissão de Pósitrons , Radioisótopos/uso terapêutico , Cintilografia , Compostos Radiofarmacêuticos/uso terapêutico
16.
Clin Nucl Med ; 47(6): 503-511, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507433

RESUMO

OBJECTIVES: This practice parameter (PP) for Lutetium-177 (Lu-177) DOTATATE peptide receptor radionuclide therapy (PRRT) aims to guide authorized users in selection of appropriate adult candidates with gastroeneropancreatic neuroendocrine tumors (GEP-NETs) from foregut, midgut, and hindgut. The essential selection criteria include somatostatin receptor-positive GEP-NETs, which are usually inoperable and progressed despite standard therapy. Lu-177 DOTATATE is a radiopharmaceutical with high avidity for somatostatin receptors that are overexpressed by these tumors. This document ensures safe handling of Lu-177 DOTATATE by the authorized users and safe management of affected patients. METHODS: The document was developed according to the systematic process developed by the American College of Radiology (ACR) and described on the ACR Web site (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards). The PP development was led by 2 ACR Committees on Practice Parameters (Nuclear Medicine and Molecular Imaging and Radiation Oncology) collaboratively with the American College of Nuclear Medicine, American Society of Radiation Oncology, and Society of Nuclear Medicine and Molecular Imaging. RESULTS: The Lu-177 DOTATATE PP reviewed pharmacology, indications, adverse effects, personnel qualifications, and required clinical evaluation before starting the treatment, as well as the recommended posttherapy monitoring, quality assurance, documentation, and appropriate radiation safety instructions provided in written form and explained to the patients. CONCLUSIONS: Lu-177 DOTATATE is available for therapy of inoperable and/or advanced GEP-NETs when conventional therapy had failed. It can reduce tumor size, improve symptoms, and increase the progression free survival. The PP document provides clinical guidance for authorized users to assure an appropriate, consistent, and safe practice of Lu-177 DOTATATE.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Adulto , Humanos , Lutécio/uso terapêutico , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/radioterapia , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico , Tomografia por Emissão de Pósitrons , Radioisótopos/uso terapêutico , Cintilografia , Compostos Radiofarmacêuticos/uso terapêutico
17.
Int J Radiat Oncol Biol Phys ; 113(4): 719-726, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367328

RESUMO

In 2017, the American Society for Radiation Oncology (ASTRO) board of directors prioritized radiopharmaceutical therapy (RPT) as a leading area for new therapeutic development, and the ASTRO RPT workgroup was created. Herein, the workgroup has developed a framework for RPT curriculum development upon which education leaders can build to integrate this modality into radiation oncology resident education. Through this effort, the workgroup aims to provide a guide to ensure robust training in an emerging therapeutic area within the context of existing radiation oncology training in radiation biology, medical physics, and clinical radiation oncology. The framework first determines the core RPT knowledge required to select patients, prescribe, safely administer, and manage related adverse events. Then, it defines the most important topics for preparing residents for clinical RPT planning and delivery. This framework is designed as a tool to supplement the current training that exists for radiation oncology residents. The final document was approved by the ASTRO board of directors in the fall of 2021.


Assuntos
Internato e Residência , Radioterapia (Especialidade) , Currículo , Humanos , Radioterapia (Especialidade)/educação , Radiobiologia/educação , Compostos Radiofarmacêuticos/uso terapêutico , Sociedades Médicas , Estados Unidos
18.
Ann Nucl Med ; 36(3): 213-223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35119623

RESUMO

PURPOSE: The objective of this study is to evaluate the lesion absorbed dose (AD), biological effective dose (BED), and equivalent uniform dose (EUD) to clinical-response relationship in lesional dosimetry for 131I therapy. METHODS: Nineteen lesions in four patients with metastatic differentiated thyroid cancer (DTC) were evaluated. The patients underwent PET/CT imaging at 2 h, 24 h, 48 h, 72 h, and 96 h post administration of ~ 33-65 MBq (0.89-1.76 mCi) of 124I before undergoing 131I therapy. The 124I PET/CT images were used to perform dosimetry calculations for 131I therapy. Lesion dose-rate values were calculated using the time-activity data and integrated over the measured time points to obtain AD and BED. The Geant4 toolkit was used to run Monte Carlo on spheres the same size as the lesions to estimate EUD. The lesion AD, BED, and EUD values were correlated with response data (i.e. change in lesion size pre- and post-therapy): complete response (CR, i.e. disappearance of the lesion), partial response (PR, i.e. any decrease in lesion length), stable disease (SD, i.e., no change in length), and progressive disease (PD, i.e., any increase in length). RESULTS: The lesion responses were CR and PR (58%, 11/19 lesions), SD (21%, 4/19), and PD (21%, 4/19). For CR and PR lesions, the ADs, BEDs and EUDs were > 75 Gy for 82% (9/11) and < 75 Gy for 18% (2/11). The ADs and BEDs were < 75 Gy for SD and PD lesions. CONCLUSION: By performing retrospective dosimetry calculations for 131I therapy based on 124I PET/CT imaging, we evaluated the correlation of three dosimetric quantities to lesional response. When lesion AD, BED, and EUD values were > 75 Gy, 47% (9/19) of the lesions had a CR or PR. The AD, BED, and EUD values for SD and PD lesions were < 75 Gy. The data presented herein suggest that the greater the lesion AD, BED, and/or EUD, the higher the probability of a therapeutic response to 131I therapy.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria/métodos , Estudos Retrospectivos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia
19.
Int J Radiat Biol ; 98(9): 1452-1461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073214

RESUMO

PURPOSE: In the current work, the RBE of a 212Pb-conjugated anti-HER2/neu antibody construct has been evaluated, in vitro, by colony formation assay. The RBE was estimated by comparing two absorbed dose-survival curves: the first obtained from the conjugated 212Pb experiments (test radiation), the second obtained by parallel experiments of single bolus irradiation of external beam (reference radiation). MATERIALS AND METHODS: Mammary carcinoma NT2.5 cells were treated with (0-3.70) kBq/ml of radiolabeled antibody. Nonspecific binding was assessed with addition of excess amount of unlabeled antibody. The colony formation curves were converted from activity concentration to cell nucleus absorbed dose by simulating the decay and transport of all daughter and secondary particles of 212Pb, using the Monte Carlo code GEANT 4. RESULTS: The radiolabeled antibody yielded an RBE of 8.3 at 37% survival and a survival independent RBE (i.e. RBE2) of 9.9. Unbound/untargeted 212Pb-labeled antibody, as obtained in blocking experiments yielded minimal alpha-particle radiation to cells. Conclusions: These results further highlight the importance of specific targeting toward achieving tumor cell kill and low toxicity to normal tissue.


Assuntos
Carcinoma , Chumbo , Partículas alfa/uso terapêutico , Animais , Linhagem Celular , Relação Dose-Resposta à Radiação , Camundongos , Ratos , Eficiência Biológica Relativa
20.
J Nucl Med ; 63(4): 591-597, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34385337

RESUMO

Digital autoradiography (DAR) is a powerful tool to quantitatively determine the distribution of a radiopharmaceutical within a tissue section and is widely used in drug discovery and development. However, the low image resolution and significant background noise can result in poor correlation, even errors, between radiotracer distribution, anatomic structure, and molecular expression profiles. Differing from conventional optical systems, the point-spread function in DAR is determined by properties of radioisotope decay, phosphor, and digitizer. Calibration of an experimental point-spread function a priori is difficult, prone to error, and impractical. We have developed a content-adaptive restoration algorithm to address these problems. Methods: We model the DAR imaging process using a mixed Poisson-gaussian model and blindly restore the image by a penalized maximum-likelihood expectation-maximization algorithm (PG-PEM). PG-PEM implements a patch-based estimation algorithm with density-based spatial clustering of applications with noise to estimate noise parameters and uses L2 and Hessian Frebonius norms as regularization functions to improve performance. Results: First, PG-PEM outperformed other restoration algorithms at the denoising task (P < 0.01). Next, we implemented PG-PEM on preclinical DAR images (18F-FDG, treated mouse tumor and heart; 18F-NaF, treated mouse femur) and clinical DAR images (bone biopsy sections from 223RaCl2-treated castration-resistant prostate cancer patients). DAR images restored by PG-PEM of all samples achieved a significantly higher effective resolution and contrast-to-noise ratio and a lower SD of background (P < 0.0001). Additionally, by comparing the registration results between the clinical DAR images and the segmented bone masks from the corresponding histologic images, we found that the radiopharmaceutical distribution was significantly improved (P < 0.0001). Conclusion: PG-PEM is able to increase resolution and contrast while robustly accounting for DAR noise and demonstrates the capacity to be widely implemented to improve preclinical and clinical DAR imaging of radiopharmaceutical distribution.


Assuntos
Diagnóstico por Imagem , Compostos Radiofarmacêuticos , Algoritmos , Animais , Autorradiografia , Fluordesoxiglucose F18 , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Imagens de Fantasmas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA