Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Discov ; 14(6): 1018-1047, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581685

RESUMO

Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE: This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.


Assuntos
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Células Mieloides/imunologia , Feminino , Masculino , Evasão da Resposta Imune
2.
Mol Immunol ; 101: 419-428, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30081328

RESUMO

Class-switch recombination (CSR) is an essential B cell process that alters the isotype of antibody produced by the B cell, tailoring the immune response to the nature of the invading pathogen. CSR requires the activity of the mutagenic enzyme AID (encoded by AICDA) to generate chromosomal lesions within the immunoglobulin genes that initiate the class switching recombination event. These AID-mediated mutations also participate in somatic-hypermutation of the immunoglobulin variable region, driving affinity maturation. As such, AID poses a significant oncogenic threat if it functions outside of the immunoglobulin locus. We found that expression of the microRNA, miR-29b, was repressed in B cells isolated from tonsil tissue, relative to circulating naïve B cells. Further investigation revealed that miR-29b was able to directly initiate the degradation of AID mRNA. Enforced overexpression of miR-29b in human B cells precipitated a reduction in overall AID protein and a corresponding diminution in CSR to IgE. Given miR-29b's ability to potently target AID, a mutagenic molecule that can initiate chromosomal translocations and "off-target" mutations, we propose that miR-29b acts to silence premature AID expression in naïve B cells, thus reducing the likelihood of inappropriate and potentially dangerous deamination activity.


Assuntos
Linfócitos B/enzimologia , Citidina Desaminase/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Ativação Enzimática , Técnicas de Silenciamento de Genes , Genoma Humano , Células HEK293 , Humanos , Switching de Imunoglobulina , Imunoglobulina E/metabolismo , MicroRNAs/genética , Tonsila Palatina/citologia , Recombinação Genética/genética
3.
PLoS One ; 7(12): e51675, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272136

RESUMO

We present a web engine boosted fluorescence in-situ hybridization (webFISH) algorithm using a genome-wide sequence similarity search to design target-specific single-copy and repetitive DNA FISH probes. The webFISH algorithm featuring a user-friendly interface (http://www.webfish2.org/) maximizes the coverage of the examined sequences with FISH probes by considering locally repetitive sequences absent from the remainder of the genome. The highly repetitive human immunoglobulin heavy chain sequence was analyzed using webFISH to design three sets of FISH probes. These allowed direct simultaneous detection of class switch recombination in both immunoglobulin-heavy chain alleles in single cells from a population of cultured primary B cells. It directly demonstrated asynchrony of the class switch recombination in the two alleles in structurally preserved nuclei while permitting parallel readout of protein expression by immunofluorescence staining. This novel technique offers the possibility of gaining unprecedented insight into the molecular mechanisms involved in class switch recombination.


Assuntos
Sondas de DNA , Switching de Imunoglobulina , Hibridização in Situ Fluorescente , Recombinação Genética , Software , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Cadeias Pesadas de Imunoglobulinas/genética , Internet , Interface Usuário-Computador
4.
J Immunol ; 188(7): 3199-207, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393152

RESUMO

CD23, the low-affinity receptor for IgE, exists in membrane and soluble forms. Soluble CD23 (sCD23) fragments are released from membrane (m)CD23 by the endogenous metalloprotease a disintegrin and metalloprotease 10. When purified tonsil B cells are incubated with IL-4 and anti-CD40 to induce class switching to IgE in vitro, mCD23 is upregulated, and sCD23 accumulates in the medium prior to IgE synthesis. We have uncoupled the effects of mCD23 cleavage and accumulation of sCD23 on IgE synthesis in this system. We show that small interfering RNA inhibition of CD23 synthesis or inhibition of mCD23 cleavage by an a disintegrin and metalloprotease 10 inhibitor, GI254023X, suppresses IL-4 and anti-CD40-stimulated IgE synthesis. Addition of a recombinant trimeric sCD23 enhances IgE synthesis in this system. This occurs even when endogenous mCD23 is protected from cleavage by GI254023X, indicating that IgE synthesis is positively controlled by sCD23. We show that recombinant trimeric sCD23 binds to cells coexpressing mIgE and mCD21 and caps these proteins on the B cell membrane. Upregulation of IgE by sCD23 occurs after class-switch recombination, and its effects are isotype-specific. These results suggest that mIgE and mCD21 cooperate in the sCD23-mediated positive regulation of IgE synthesis on cells committed to IgE synthesis. Feedback regulation may occur when the concentration of secreted IgE becomes great enough to allow binding to mCD23, thus preventing further release of sCD23. We interpret these results with the aid of a model for the upregulation of IgE by sCD23.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Genes de Imunoglobulinas , Imunoglobulina E/biossíntese , Receptores de IgE/imunologia , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Linfócitos B/metabolismo , Dipeptídeos/farmacologia , Retroalimentação Fisiológica , Homeostase , Humanos , Ácidos Hidroxâmicos/farmacologia , Switching de Imunoglobulina , Capeamento Imunológico , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Inibidores de Proteases/farmacologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores de Complemento 3d/imunologia , Receptores de IgE/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade , Regulação para Cima
5.
Cancer Immunol Immunother ; 58(6): 915-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18941743

RESUMO

Trastuzumab (Herceptin), a humanized IgG1 antibody raised against the human epidermal growth factor receptor 2 (HER2/neu), is the main antibody in clinical use against breast cancer. Pre-clinical evidence and clinical studies indicate that trastuzumab employs several anti-tumour mechanisms that most likely contribute to enhanced survival of patients with HER2/neu-positive breast carcinomas. New strategies are aimed at improving antibody-based therapeutics like trastuzumab, e.g. by enhancing antibody-mediated effector function mechanisms. Based on our previous findings that a chimaeric ovarian tumour antigen-specific IgE antibody showed greater efficacy in tumour cell killing, compared to the corresponding IgG1 antibody, we have produced an IgE homologue of trastuzumab. Trastuzumab IgE was engineered with the same light- and heavy-chain variable-regions as trastuzumab, but with an epsilon in place of the gamma-1 heavy-chain constant region. We describe the physical characterisation and ligand binding properties of the trastuzumab IgE and elucidate its potential anti-tumour activities in functional assays. Both trastuzumab and trastuzumab IgE can activate monocytic cells to kill tumour cells, but they operate by different mechanisms: trastuzumab functions in antibody-dependent cell-mediated phagocytosis (ADCP), whereas trastuzumab IgE functions in antibody-dependent cell-mediated cytotoxicity (ADCC). Trastuzumab IgE, incubated with mast cells and HER2/neu-expressing tumour cells, triggers mast cell degranulation, recruiting against cancer cells a potent immune response, characteristic of allergic reactions. Finally, in viability assays both antibodies mediate comparable levels of tumour cell growth arrest. These functional characteristics of trastuzumab IgE, some distinct from those of trastuzumab, indicate its potential to complement or improve upon the existing clinical benefits of trastuzumab.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Imunoglobulina E/imunologia , Receptor ErbB-2/imunologia , Anticorpos Monoclonais Humanizados , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fagocitose , Engenharia de Proteínas , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Trastuzumab
6.
Eur J Immunol ; 37(6): 1538-47, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17474150

RESUMO

There is a current need for safe, cheap, and effective vaccine adjuvants, to combine with sub-unit antigens to enhance their immunogenicity. In this study we have used probiotic Bacillus subtilis spores, known to be safe and fully tolerated by ingestion in man, and explored their ability to influence the magnitude and diversity of immune responses induced against two model antigens, tetanus toxoid fragment C (TT) and ovalbumin (OVA) in mice. The results show that B. subtilis spores not only increased antibody and T cell responses to a co-administered soluble antigen, but also broadened them, to include both antigen-specific CD4+ and CD8+ T cell responses as well as complement and non-complement fixing antibody isotypes. Furthermore, following intranasal immunization, spores augmented specific IgA to co-administered antigen both in the local respiratory and distal vaginal mucosa, as well as increased antigen-specific IgG antibody in draining LN and blood. Collectively, these data demonstrate that naturally occurring, non-pathogenic, non-commensal spores of B. subtilis both instruct and augment polyvalent immune responses and highlight their clinical potential in future vaccines to generate broad-based immunity.


Assuntos
Bacillus subtilis/imunologia , Esporos Bacterianos/imunologia , Células Th1/imunologia , Células Th2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Colo do Útero/química , Colo do Útero/imunologia , Citocinas/metabolismo , Proteínas do Ovo/imunologia , Feminino , Imunidade nas Mucosas/imunologia , Imunoglobulina A/análise , Imunoglobulina A/sangue , Imunoglobulina G/análise , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Fragmentos de Peptídeos , Baço/citologia , Baço/imunologia , Toxoide Tetânico/química , Toxoide Tetânico/imunologia , Células Th1/metabolismo , Células Th2/metabolismo , Vacinação , Vagina/química , Vagina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA