RESUMO
Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG4-N3 with 5-ethynyl-dUMP or -dUTP. The modified triphosphate was used as substrate for enzymatic synthesis of modified DNA probes with KOD XL DNA polymerase. The keto-ABNO radical reacted with tryptophan (Trp) and Trp-containing peptides to form a stable tricyclic fused hexahydropyrrolo-indole conjugates. Similarly modified ABNOH-linked nucleotides reacted with Trp-containing peptides to form a stable conjugate in the presence but surprisingly even in the absence of NaNO2 (presumably through activation by O2). The reactive ABNOH-modified DNA probe was used for bioconjugations and crosslinking with Trp-containing peptides or proteins.
Assuntos
DNA , Nucleotídeos , Peptídeos , Triptofano , Triptofano/química , DNA/química , Peptídeos/química , Nucleotídeos/química , Proteínas/química , Reagentes de Ligações Cruzadas/química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/químicaRESUMO
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Assuntos
DNA , Monossacarídeos , DNA/química , DNA/metabolismo , Monossacarídeos/química , Monossacarídeos/síntese química , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Glicosídeos/química , Glicosídeos/síntese química , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Concanavalina A/química , Concanavalina A/metabolismo , Pirimidinas/química , Pirimidinas/síntese química , Conformação de Ácido NucleicoRESUMO
A series of quinolino-fused 7-deazapurine (pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline) ribonucleosides were designed and synthesized. The synthesis of the key 11-chloro-pyrimido[5',4':4,5]pyrrolo[3,2-f]quinoline was based on the Negishi cross-coupling of iodoquinoline with zincated 4,6-dichloropyrimidine followed by azidation and thermal or photochemical cyclization. Vorbrüggen glycosylation of the tetracyclic heterocycle followed by cross-coupling or substitution reactions at position 11 gave the desired set of final nucleosides that showed moderate to weak cytostatic activity and fluorescent properties. The corresponding fused adenosine derivative was converted to the triphosphate and successfully incorporated to RNA using in vitro transcription with T7 RNA polymerase.
RESUMO
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Assuntos
DNA Polimerase Dirigida por DNA , RNA , RNA/genética , RNA/química , DNA Polimerase Dirigida por DNA/genética , Nucleotídeos/química , RNA Mensageiro/genéticaRESUMO
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Assuntos
DNA , Nucleotídeos , DNA/química , Nucleotídeos/química , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , PirimidinasRESUMO
We designed and synthesized a set of 2'-deoxyribonucleoside 3'-phosphoramidites derived from 5-phenylethynyluracil, 5-(pentyn-1-yl)cytosine, 7-(indol-3-yl)ethynyl-7-deazaadenine, and 7-isopropylethynyl-7-deazaguanine. These nucleoside phosphoramidites were successfully used for automated solid-phase synthesis of oligonucleotides containing one or several modifications, including fully modified sequences where every nucleobase was displaying a modification, and their hybridization was studied. The phosphoramidite building blocks have potential for synthesis of hypermodified aptamers and other functional nucleic acid-based polymers, which sequence-specifically display amino acid-like hydrophobic substituents.
RESUMO
The previously reported approach of orthogonal multipotential redox coding of all four DNA bases allowed only analysis of the relative nucleotide composition of short DNA stretches. Here, we present two methods for normalization of the electrochemical readout to facilitate the determination of the total nucleotide composition. The first method is based on the presence or absence of an internal standard of 7-deaza-2'-deoxyguanosine in a DNA primer. The exact composition of the DNA was elucidated upon two parallel analyses and the subtraction of the electrochemical signal intensities. The second approach took advantage of a 5'-viologen modified primer, with this fifth orthogonal redox label acting as a reference for signal normalization, thus allowing accurate electrochemical sequence analysis in a single read. Both approaches were tested using various sequences, and the voltammetric signals obtained were normalized using either the internal standard or the reference label and demonstrated to be in perfect agreement with the actual nucleotide composition, highlighting the potential for targeted DNA sequence analysis.
Assuntos
DNA , Nucleotídeos , Nucleotídeos/química , DNA/química , Primers do DNA , OxirreduçãoRESUMO
Osteoporosis is a multifactorial disease influenced by genetic and environmental factors, which contributes to an increased risk of bone fracture, but early diagnosis of this disease cannot be achieved using current techniques. We describe a generic platform for the targeted electrochemical genotyping of SNPs identified by genome-wide association studies to be associated with a genetic predisposition to osteoporosis. The platform exploits isothermal solid-phase primer elongation with ferrocene-labeled nucleoside triphosphates. Thiolated reverse primers designed for each SNP were immobilized on individual gold electrodes of an array. These primers are designed to hybridize to the SNP site at their 3'OH terminal, and primer elongation occurs only where there is 100% complementarity, facilitating the identification and heterozygosity of each SNP under interrogation. The platform was applied to real blood samples, which were thermally lysed and directly used without the need for DNA extraction or purification. The results were validated using Taqman SNP genotyping assays and Sanger sequencing. The assay is complete in just 15 min with a total cost of 0.3 per electrode. The platform is completely generic and has immense potential for deployment at the point of need in an automated device for targeted SNP genotyping with the only required end-user intervention being sample addition.
RESUMO
A modified 2'-deoxycytidine triphosphate derivative (dCTO TP) bearing a thiazole orange moiety tethered via an oligoethylene glycol linker was designed and synthesized. The nucleotide was incorporated into DNA by DNA polymerases in vitro as well as in live cells. Upon incorporation of dCTO TP into DNA, the thiazole orange moiety exhibited a fluorescence lifetime that differed significantly from the non-incorporated (i.e. free and non-covalently intercalated) forms of dCTO TP. When dCTO TP was delivered into live U-2 OS cells using a synthetic nucleoside triphosphate transporter, it allowed us to distinguish and monitor cells that were actively synthesizing DNA in real time, from the very first moments after the treatment. We anticipate that this probe could be used to study chromatin organization and dynamics.
Assuntos
DNA , Nucleotídeos , Fluorescência , DNA/metabolismo , BenzotiazóisRESUMO
We designed and synthesized a series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing various lipid moieties. Fatty acid- and cholesterol-modified dNTPs proved to be substrates for KOD XL DNA polymerase in primer extension reactions. They were also mutually compatible for simultaneous multiple incorporations into the DNA strand. The methodology of enzymatic synthesis opened a pathway to diverse structurally unique lipid-ON probes containing one or more lipid units. We studied interactions of such probes with the plasma membranes of live cells. Employing a rational design, we found a series of lipid-ONs with enhanced membrane anchoring efficiency. The in-membrane stability of multiply modified ONs was superior to that of commonly studied ON analogues, in which a single cholesterol molecule is typically tethered to the thread end. Notably, some of the probes were detected at the cell surface even after 24 h upon removal of the probe solution. Such an effect was general to several studied cell lines.
RESUMO
Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.
RESUMO
A series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 2- or 4-linked trans-cyclooctene (TCO) or bicyclononyne (BCN) tethered through a shorter propargylcarbamate or longer triethyleneglycol-based spacer were designed and synthesized. They were found to be good substrates for KOD XL DNA polymerase for primer extension enzymatic synthesis of modified oligonucleotides. We systematically tested and compared the reactivity of TCO- and BCN-modified nucleotides and DNA with several fluorophore-containing tetrazines in inverse electron-demand Diels-Alder (IEDDA) click reactions to show that the longer linker is crucial for efficient labeling. The modified dNTPs were transported into live cells using the synthetic transporter SNTT1, incubated for 1 h, and then treated with tetrazine conjugates. The PEG3-linked 4TCO and BCN nucleotides showed efficient incorporation into genomic DNA and good reactivity in the IEDDA click reaction with tetrazines to allow staining of DNA and imaging of DNA synthesis in live cells within time periods as short as 15 min. The BCN-linked nucleotide in combination with TAMRA-linked (TAMRA = carboxytetramethylrhodamine) tetrazine was also efficiently used for staining of DNA for flow cytometry. This methodology is a new approach for in cellulo metabolic labeling and imaging of DNA synthesis which is shorter, operationally simple, and overcomes several problems of previously used methods.
RESUMO
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Assuntos
Nucleotídeos , RNA , Nucleotídeos/metabolismo , Sondas RNA , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Ligação a RNA , Reagentes de Ligações CruzadasRESUMO
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 3,3'-dimethoxy-2,2'-diphenyl-6-(4-hydroxyphenyl)-bodipy fluorophore attached through a propargyl or propargyl-triethylene glycol linker to position 5 of 2'-deoxycytidine were designed and synthesized. They exerted bright red fluorescence and good sensitivity to viscosity changing their lifetime from 1.6 to 4.5 ns. The modifed dNTPs were substrates for DNA polymerases and were used in enzymatic synthesis of labeled DNA through primer extension. The modified DNA probes served as viscosity sensors responding to protein binding by changes of lifetime. The nucleotide with longer linker (dCpegMOBTP) was transported to live cells and incorporated into the genomic DNA, which can be useful for staining of DNA and imaging of DNA synthesis.
Assuntos
DNA , Nucleotídeos , Viscosidade , DNA/metabolismo , DNA Polimerase Dirigida por DNA , NucleosídeosRESUMO
Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.
Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Camundongos , Animais , Humanos , Nucleotídeos Cíclicos/química , Ligantes , Proteínas de Membrana/metabolismo , Nucleotidiltransferases , Citocinas , InterferonsRESUMO
Correction for 'Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates' by Marek Ondrus et al., Chem. Commun., 2022, 58, 11248-11251, https://doi.org/10.1039/D2CC03588J.
RESUMO
A new approach for synthesizing polycyclic heterofused 7-deazapurine heterocycles and the corresponding nucleosides was developed based on C-H functionalization of diverse (hetero)aromatics with dibenzothiophene-S-oxide followed by the Negishi cross-cooupling with bis(4,6-dichloropyrimidin-5-yl)zinc. This cross-coupling afforded a series of (het)aryl-pyrimidines that were converted to fused deazapurine heterocycles through azidation and thermal cyclization. The fused heterocycles were glycosylated to the corresponding 2'-deoxy- and ribonucleosides, and a series of derivatives were prepared by nucleophilic substitutions at position 4. Four series of new polycyclic thieno-fused 7-deazapurine nucleosides were synthesized using this strategy. Most of the deoxyribonucleosides showed good cytotoxic activity, especially for the CCRF-CEM cell line. Phenyl- and thienyl-substituted thieno-fused 7-deazapurine nucleosides were fluorescent, and the former one was converted to 2'-deoxyribonucleoside triphosphate for enzymatic synthesis of labeled oligonucleotides.
Assuntos
Nucleosídeos , Ribonucleosídeos , Linhagem Celular Tumoral , Pirimidinas , Óxidos , Zinco , Oligonucleotídeos , Desoxirribonucleosídeos , Nucleosídeos de PurinaRESUMO
We have developed a new alternative for enzymatic synthesis of single-stranded hypermodified oligodeoxyribonucleotides displaying four different hydrophobic groups based on reverse transcription from RNA templates catalyzed by DNA polymerases using a set of base-modified dNTPs followed by digestion of RNA by RNases. Using mixed oligodeoxyribonucleotide primers containing a ribonucleotide at the 3'-end, RNase AT1 simultaneously digested the template and cleaved off the primer to release a fully modified oligonucleotide that can be further 3'-labelled with a fluorescent nucleotide using TdT. The resulting hypermodified oligonucleotides could find applications in selection of aptamers or other functional macromolecules.
Assuntos
Oligodesoxirribonucleotídeos , RNA , Primers do DNA , DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Polímeros , RNA/química , Ribonucleases , Ribonucleotídeos , Moldes GenéticosRESUMO
Homologues of natural epigenetic pyrimidine nucleosides and nucleotides were designed and synthesized. They included 5-ethyl-, 5-propyl-, 5-(1-hydroxyethyl)-, 5-(1-hydroxypropyl)- and 5-acetyl- and 5-propionylcytosine and -uracil 2'-deoxyribonucleosides and their corresponding 5'-O-triphosphates (dNXTPs). The epimers of 5-(1-hydroxyethyl)- and 5-(1-hydroxypropyl)pyrimidine nucleosides were separated and their absolute configuration was determined by a combination of X-ray and NMR analysis. The modified dNXTPs were used as substrates for PCR synthesis of modified DNA templates used for the study of transcription with bacterial RNA polymerase. Fundamental differences in transcription efficiency were observed, depending on the various modifications. The most notable effects included pronounced stimulation of transcription from 5-ethyluracil-bearing templates (200% transcription yield compared to natural thymine) and an enhancing effect of 5-acetylcytosine versus inhibiting effect of 5-acetyluracil. In summary, these results reveal that RNA polymerase copes with dramatically altered DNA structure and suggest that these nucleobases could potentially play roles as artificial epigenetic DNA nucleobases.