Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Microbiol ; 24(8): 3672-3692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35415862

RESUMO

The environmental bacterium Legionella pneumophila causes the pneumonia Legionnaires' disease. The opportunistic pathogen forms biofilms and employs the Icm/Dot type IV secretion system (T4SS) to replicate in amoebae and macrophages. A regulatory network comprising the Legionella quorum sensing (Lqs) system and the transcription factor LvbR controls bacterial motility, virulence and biofilm architecture. Here we show by comparative proteomics that in biofilms formed by the L. pneumophila ΔlqsR or ΔlvbR regulatory mutants the abundance of proteins encoded by a genomic 'fitness island', metabolic enzymes, effector proteins and flagellar components (e.g. FlaA) varies. ∆lqsR or ∆flaA mutants form 'patchy' biofilms like the parental strain JR32, while ∆lvbR forms a 'mat-like' biofilm. Acanthamoeba castellanii amoebae migrated more slowly through biofilms of L. pneumophila lacking lqsR, lvbR, flaA, a functional Icm/Dot T4SS (∆icmT), or secreted effector proteins. Clusters of bacteria decorated amoebae in JR32, ∆lvbR or ∆icmT biofilms but not in ∆lqsR or ∆flaA biofilms. The amoeba-adherent bacteria induced promoters implicated in motility (PflaA ) or virulence (PsidC , PralF ). Taken together, the Lqs-LvbR network (quorum sensing), FlaA (motility) and the Icm/Dot T4SS (virulence) regulate migration of A. castellanii through L. pneumophila biofilms, and - apart from the T4SS - govern bacterial cluster formation on the amoebae.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Legionella , Doença dos Legionários , Proteínas de Bactérias/metabolismo , Biofilmes , Flagelos/genética , Flagelos/metabolismo , Humanos , Legionella/metabolismo , Legionella pneumophila/genética , Percepção de Quorum
2.
Appl Environ Microbiol ; 88(5): e0237021, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-34985976

RESUMO

Legionella species are facultative intracellular pathogens that cause a life-threatening pneumonia termed Legionnaires' disease. Legionella pneumophila employs the Lqs-LvbR (Legionella quorum sensing-Legionella virulence and biofilm regulator) network to regulate virulence and motility, but its role for growth in media is ill-defined. Here, we report that compared to the L. pneumophila reference strain JR32, a ΔlqsR mutant showed a reduced lag phase at 30°C and reached a higher cell density at 45°C, while the ΔlqsA, ΔlqsS, and ΔlqsT mutants showed a longer lag phase and reached a lower cell density. A ΔlvbR mutant resumed growth like the parental strain at 30°C but exhibited a substantially reduced cell density at 45°C. Thus, LvbR is an important cell density regulator at elevated temperatures. Environmental and clinical L. pneumophila strains grew in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES)-buffered yeast extract (AYE) medium after distinct lag phases with similar rates at 30°C, reached different cell densities at the optimal growth temperature of 40°C, and no longer grew at 50°C. Legionella longbeachae reached a rather low cell density at 40°C and did not grow at and beyond 45°C. Genes encoding components of the Lqs-LvbR network were present in the genomes of the environmental and clinical L. pneumophila isolates, and upon growth at 30°C or 45°C, the PlqsR, PlqsA, PlqsS, and PlvbR promoters from strain JR32 were expressed in these strains with distinct patterns. Taken together, our results indicate that the Lqs-LvbR network governs the temperature-dependent growth onset and cell density of the L. pneumophila reference strain JR32 and possibly also of environmental and clinical L. pneumophila isolates. IMPORTANCE Environmental bacteria of the genus Legionella are the causative agents of the severe pneumonia Legionnaires' disease, the incidence of which is on the rise worldwide. Legionella pneumophila and Legionella longbeachae are the clinically most relevant species. The opportunistic pathogens are inhaled through contaminated aerosols and replicate in human lung macrophages with a mechanism similar to that in their natural hosts, free-living amoebae. Given their prevalence in natural and technical water systems, an efficient control of Legionella spp. by physical, chemical, or biological means will reduce the incidence of Legionnaires' disease. Here, we show that the Legionella quorum sensing (Lqs) system and the pleiotropic transcription factor LvbR govern the temperature-dependent growth onset and cell density of bacterial cultures. Hence, the growth of L. pneumophila in water systems is determined not only by the temperature and nutrient availability but also by quorum sensing, i.e., density- and signaling molecule-dependent gene regulation.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Proteínas de Bactérias/genética , Contagem de Células , Humanos , Legionella/genética , Doença dos Legionários/microbiologia , Percepção de Quorum , Temperatura
3.
EMBO Rep ; 22(9): e52972, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34314090

RESUMO

The Gram-negative bacterium Legionella pneumophila is the causative agent of Legionnaires' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella-containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non-virulent and a non-replicating, virulent/transmissive phase. Here, we show on a single-cell level that at late stages of infection, individual motile (PflaA -GFP-positive) and virulent (PralF - and PsidC -GFP-positive) L. pneumophila emerge in the cluster of non-growing bacteria within an LCV. Comparative proteomics of PflaA -GFP-positive and PflaA -GFP-negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA -GFP-positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi-phasic life cycle of L. pneumophila.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Proteínas de Bactérias/genética , Humanos , Legionella/genética , Legionella pneumophila/genética , Percepção de Quorum , Vacúolos
4.
Curr Opin Microbiol ; 55: 9-16, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045871

RESUMO

Bacterial gene regulation occurs through complex networks, wherein linear systems respond to intracellular or extracellular cues and engage on vivid crosstalk. The ubiquitous water-borne bacterium Legionella pneumophila colonizes various distinct environmental niches ranging from biofilms to protozoa, and - as an 'accidental' pathogen - the human lung. Consequently, L. pneumophila gene regulation evolved to integrate a broad spectrum of different endogenous and exogenous signals. Endogenous signals produced and detected by L. pneumophila comprise the quorum sensing autoinducer LAI-1 (3-hydroxypentadecane-4-one) and c-di-GMP. As an exogenous cue, nitric oxide controls the c-di-GMP regulatory network of L. pneumophila. The Legionella quorum sensing (Lqs) system regulates virulence, motility and natural competence of L. pneumophila. The Lqs system is linked to c-di-GMP signaling through the pleiotropic transcription factor LvbR, which also regulates the architecture of L. pneumophila biofilms. In this review, we highlight recent insights into the crosstalk of Legionella quorum sensing and c-di-GMP signaling.


Assuntos
4-Butirolactona/análogos & derivados , Alcanos/metabolismo , GMP Cíclico/análogos & derivados , Cetonas/metabolismo , Legionella pneumophila/genética , Percepção de Quorum , Transdução de Sinais , 4-Butirolactona/fisiologia , Proteínas de Bactérias/fisiologia , Biofilmes , GMP Cíclico/fisiologia , Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/fisiologia , Fatores de Transcrição/fisiologia , Virulência
5.
Mol Microbiol ; 113(6): 1070-1084, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31997467

RESUMO

The water-borne bacterium Legionella pneumophila replicates in environmental protozoa and upon inhalation destroys alveolar macrophages, thus causing a potentially fatal pneumonia termed 'Legionnaires' disease'. L. pneumophila employs the Legionella quorum sensing (Lqs) system to control its life cycle, pathogen-host cell interactions, motility and natural competence. Signaling through the Lqs system occurs through the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1) and converges on the prototypic response regulator LqsR, which dimerizes upon phosphorylation of the conserved aspartate, D108 . In this study, we determine the high-resolution structure of monomeric LqsR. The structure reveals a receiver domain adopting a canonical (ßα)5 fold, which is connected through an additional sixth helix and an extended α5-helix to a novel output domain. The two domains delineate a mainly positively charged groove, and the output domain adopts a five-stranded antiparallel ß-sheet fold similar to nucleotide-binding proteins. Structure-based mutagenesis identified amino acids critical for LqsR phosphorylation and dimerization. Upon phosphorylation, the LqsRD172A and LqsRD302N/E303Q mutant proteins dimerized even more readily than wild-type LqsR, and no evidence for semi-phosphorylated heterodimers was obtained. Taken together, the high-resolution structure of LqsR reveals functionally relevant amino acid residues implicated in signal transduction of the prototypic response regulator.


Assuntos
Legionella pneumophila/metabolismo , Percepção de Quorum/fisiologia , Elementos de Resposta/genética , Elementos de Resposta/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Legionella pneumophila/genética , Locomoção/fisiologia , Fosforilação/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína
6.
Methods Mol Biol ; 1921: 79-89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694486

RESUMO

The amoeba-resistant bacterium Legionella pneumophila infects humans through aerosols and thereby can cause a life-threatening pneumonia termed Legionnaires' disease. In the environment L. pneumophila forms and colonizes biofilms, which usually comprise complex multispecies communities. In these biofilms L. pneumophila persists and replicates intracellularly in protozoa, such as the amoeba Acanthamoeba castellanii. The interactions between sessile L. pneumophila in biofilms and their natural protozoan hosts are not understood on a molecular level. Here, we describe a method to visualize by confocal microscopy the formation and architecture of mono-species L. pneumophila biofilms. Furthermore, we describe and quantify the migration or "grazing" of A. castellanii in the biofilm. This allows investigating on a molecular and cellular level L. pneumophila biofilm formation and Legionella-amoeba interactions within biofilms.


Assuntos
Acanthamoeba castellanii/fisiologia , Biofilmes , Legionella/fisiologia , Locomoção , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila , Microscopia Confocal
7.
Environ Microbiol ; 21(3): 1035-1053, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623561

RESUMO

The causative agent of Legionnaires' disease, Legionella pneumophila, colonizes amoebae and biofilms in the environment. The opportunistic pathogen employs the Lqs (Legionella quorum sensing) system and the signalling molecule LAI-1 (Legionella autoinducer-1) to regulate virulence, motility, natural competence and expression of a 133 kb genomic "fitness island", including a putative novel regulator. Here, we show that the regulator termed LvbR is an LqsS-regulated transcription factor that binds to the promoter of lpg1056/hnox1 (encoding an inhibitor of the diguanylate cyclase Lpg1057), and thus, regulates proteins involved in c-di-GMP metabolism. LvbR determines biofilm architecture, since L. pneumophila lacking lvbR accumulates less sessile biomass and forms homogeneous mat-like structures, while the parental strain develops more compact bacterial aggregates. Comparative transcriptomics of sessile and planktonic ΔlvbR or ΔlqsR mutant strains revealed concerted (virulence, fitness island, metabolism) and reciprocally (motility) regulated genes in biofilm and broth respectively. Moreover, ΔlvbR is hyper-competent for DNA uptake, defective for phagocyte infection, outcompeted by the parental strain in amoebae co-infections and impaired for cell migration inhibition. Taken together, our results indicate that L. pneumophila LvbR is a novel pleiotropic transcription factor, which links the Lqs and c-di-GMP regulatory networks to control biofilm architecture and pathogen-host cell interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Legionella pneumophila/genética , Fatores de Transcrição/metabolismo , 4-Butirolactona/análogos & derivados , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Percepção de Quorum , Virulência
8.
Nat Plants ; 3(12): 937-945, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29180815

RESUMO

Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.


Assuntos
Genes Bacterianos , Resistência a Herbicidas/genética , Compostos Organofosforados/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Acetiltransferases/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Cristalografia por Raios X , Metaboloma , Modelos Moleculares , Plantas Geneticamente Modificadas/genética , Glycine max/efeitos dos fármacos , Glycine max/genética , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Triticum/efeitos dos fármacos , Triticum/genética
9.
Front Microbiol ; 8: 79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28217110

RESUMO

The ubiquitous Gram-negative bacterium Legionella pneumophila parasitizes environ mental amoebae and, upon inhalation, replicates in alveolar macrophages, thus causing a life-threatening pneumonia called "Legionnaires' disease." The opportunistic pathogen employs a bi-phasic life cycle, alternating between a replicative, non-virulent phase and a stationary, transmissive/virulent phase. L. pneumophila employs the Lqs (Legionella quorum sensing) system as a major regulator of the growth phase switch. The Lqs system comprises the autoinducer synthase LqsA, the homologous sensor kinases LqsS and LqsT, as well as a prototypic response regulator termed LqsR. These components produce, detect, and respond to the α-hydroxyketone signaling molecule LAI-1 (Legionella autoinducer-1, 3-hydroxypentadecane-4-one). LAI-1-mediated signal transduction through the sensor kinases converges on LqsR, which dimerizes upon phosphorylation. The Lqs system regulates the bacterial growth phase switch, pathogen-host cell interactions, motility, natural competence, filament production, and expression of a chromosomal "fitness island." Yet, LAI-1 not only mediates bacterial intra-species signaling, but also modulates the motility of eukaryotic cells through the small GTPase Cdc42 and thus promotes inter-kingdom signaling. Taken together, the low molecular weight compound LAI-1 produced by L. pneumophila and sensed by the bacteria as well as by eukaryotic cells plays a major role in pathogen-host cell interactions.

10.
J Bacteriol ; 197(8): 1466-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666137

RESUMO

UNLABELLED: The general stress response (GSR) allows bacteria to monitor and defend against a broad set of unrelated, adverse environmental conditions. In Alphaproteobacteria, the key step in GSR activation is phosphorylation of the response regulator PhyR. In Sphingomonas melonis Fr1, seven PhyR-activating kinases (Paks), PakA to PakG, are thought to directly phosphorylate PhyR under different stress conditions, but the nature of the activating signals remains obscure. PakF, a major sensor of NaCl and heat shock, lacks a putative sensor domain but instead harbors a single receiver (REC) domain (PakFREC) N-terminal to its kinase catalytic core. Such kinases are called "hybrid response regulators" (HRRs). How HRRs are able to perceive signals in the absence of a true sensor domain has remained largely unexplored. In the present work, we show that stresses are actually sensed by another kinase, KipF (kinase of PakF), which phosphorylates PakFREC and thereby activates PakF. KipF is a predicted transmembrane kinase, harboring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic kinase catalytic core. We demonstrate that KipF senses different salts through its CHASE3 domain but is not a sensor of general osmotic stress. While salt sensing depends on the CHASE3 domain, heat shock sensing does not, suggesting that these stresses are perceived by different mechanisms. In summary, our results establish a two-tiered histidine kinase pathway involved in activation of the GSR in S. melonis Fr1 and provide the first experimental evidence for the so far uncharacterized CHASE3 domain as a salt sensor. IMPORTANCE: Hybrid response regulators (HRRs) represent a particular class of histidine kinases harboring an N-terminal receiver (REC) domain instead of a true sensor domain. This suggests that the actual input for HRRs may be phosphorylation of the REC domain. In the present study, we addressed this question by using the HRR PakF. Our results suggest that PakF is activated through phosphorylation of its REC domain and that this is achieved by another kinase, KipF. KipF senses heat shock and salt stress, with the latter requiring the periplasmic CHASE3 domain. This work not only suggests that HRRs work in two-tiered histidine kinase pathways but also provides the first experimental evidence for a role of the so far uncharacterized CHASE3 domain in salt sensing.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Cloreto de Sódio/metabolismo , Sphingomonas/enzimologia , Estresse Fisiológico/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Histidina Quinase , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Pressão Osmótica , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Sphingomonas/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(48): E5196-204, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404331

RESUMO

The general stress response (GSR) in Alphaproteobacteria was recently shown to be controlled by a partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. Activation of PhyR ultimately results in release of the alternative extracytoplasmic function sigma factor σ(EcfG), which redirects transcription toward the GSR. Little is known about the signal transduction pathway(s) controlling PhyR phosphorylation. Here, we identified the single-domain response regulator (SDRR) SdrG and seven histidine kinases, PakA to PakG, belonging to the HWE/HisKA2 family as positive modulators of the GSR in Sphingomonas melonis Fr1. Phenotypic analyses, epistasis experiments, and in vitro phosphorylation assays indicate that Paks directly phosphorylate PhyR and SdrG, and that SdrG acts upstream of or in concert with PhyR, modulating its activity in a nonlinear pathway. Furthermore, we found that additional SDRRs negatively affect the GSR in a way that strictly requires PhyR and SdrG. Finally, analysis of GSR activation by thermal, osmotic, and oxidative stress indicates that Paks display different degrees of redundancy and that a specific kinase can sense multiple stresses, suggesting that the GSR senses a particular condition as a combination of, rather than individual, molecular cues. This study thus establishes the alphaproteobacterial GSR as a complex and interlinked network of two-component systems, in which multiple histidine kinases converge to PhyR, the phosphorylation of which is, in addition, subject to regulation by several SDRRs. Our finding that most HWE/HisKA2 kinases contribute to the GSR in S. melonis Fr1 opens the possibility that this notion might also be true for other Alphaproteobacteria.


Assuntos
Alphaproteobacteria/genética , Proteínas de Bactérias/genética , Transdução de Sinais/genética , Sphingomonas/genética , Estresse Fisiológico/genética , Alphaproteobacteria/efeitos dos fármacos , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Western Blotting , Etanol/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Histidina Quinase , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fator sigma/genética , Fator sigma/metabolismo , Cloreto de Sódio/farmacologia , Sphingomonas/efeitos dos fármacos , Sphingomonas/metabolismo , Temperatura , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA