Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
Stem Cells ; 41(12): 1091-1100, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37688386

RESUMO

This review focuses on the crucial role of the intestinal epithelium in maintaining intestinal homeostasis and its significance in the pathogenesis of necrotizing enterocolitis (NEC) and inflammatory bowel diseases (IBD). NEC is a devastating neonatal disease, while IBD represents a global healthcare problem with increasing incidence. The breakdown of the intestinal barrier in neonates is considered pivotal in the development and progression of both disorders. This review provides an overview of the current state of in vitro, ex vivo, and animal models to study epithelial injury in NEC and IBD, addressing pertinent questions that engage clinicians and researchers alike. Despite significant advancements in early recognition and aggressive treatment, no single therapy has been conclusively proven effective in reducing the severity of these disorders. Although early interventions have improved clinical outcomes, NEC and IBD continue to impose substantial morbidity, mortality, and economic burdens on affected individuals and society. Consequently, exploring alternative therapeutic options capable of preventing and treating the sequelae of NEC and IBD has become a pressing necessity. In recent decades, extracellular vehicles (EVs) have emerged as a potential solution to modulate the pathogenic mechanism in these multifactorial and complex disorders. Despite the diverse array of proposed models, a comprehensive model to investigate and decelerate the progression of NEC and IBD remains to be established. To bridge the translational gap between preclinical studies and clinical applications, enhancements in the technical development of gut-on-a-chip models and EVs hold considerable promise.


Assuntos
Enterocolite Necrosante , Vesículas Extracelulares , Doenças do Recém-Nascido , Doenças Inflamatórias Intestinais , Animais , Recém-Nascido , Humanos , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/terapia , Enterocolite Necrosante/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo
2.
J Appl Oral Sci ; 31: e20220489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075387

RESUMO

OBJECTIVE: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and ßIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and ßIII-tubulin; the fluorescent signal intensity was significantly higher in ßIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.


Assuntos
Células-Tronco Mesenquimais , Tubulina (Proteína) , Criança , Humanos , Nestina/metabolismo , Tubulina (Proteína)/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Dente Decíduo , Células Cultivadas , Células Estromais
3.
J. appl. oral sci ; 31: e20220489, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430629

RESUMO

Abstract Objective: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. Methodology: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and βIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. Results: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and βIII-tubulin; the fluorescent signal intensity was significantly higher in βIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. Conclusion: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA