Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
RSC Med Chem ; 15(3): 1022-1037, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516592

RESUMO

Malaria eradication is still a global challenge due to the lack of a broadly effective vaccine and the emergence of drug resistance to most of the currently available drugs as part of the mainline artemisinin-based combination therapy. A variety of experimental approaches are quite successful in identifying and synthesizing new promising pharmacophore hybrids with distinct mechanisms of action. Based on our recent findings, the current study demonstrates the reinvestigation of a series of diphenylmethylpiperazine and pyrazine-derived molecular hybrids. Pyrazine-derived molecular hybrids were screened to investigate the antiplasmodial activity on drug-susceptible Pf3D7 and drug-resistant PfW2 strains. The selected compounds were shown to be potent dual inhibitors of cysteine protease PfFP2 and PfFP3. Time-course parasitic development study demonstrated that compounds were able to arrest the growth of the parasite at the early trophozoite stage. The compounds did not show hemolysis of red blood cells and showed selectivity to the parasite compared with the mammalian Vero and A5489 cell lines. The study underlined HR5 and HR15 as a new class of Plasmodial falcipain inhibitors with an IC50 of 6.2 µM and 5.9 µM for PfFP2 and 6.8 µM and 6.4 µM for PfFP3, respectively. Both compounds have antimalarial efficacy with IC50 values of 3.05 µM and 2.80 µM for the Pf3D7 strain, and 4.35 µM and 3.39 µM for the PfW2 strain, respectively. Further structural optimization may turn them into potential Plasmodial falcipain inhibitors for malaria therapeutics.

2.
ACS Chem Neurosci ; 15(3): 539-559, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38149821

RESUMO

The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aß aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aß42 oligomers at 10 µM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 µM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aß42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 µM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aß oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of ß-amyloid (Aß) aggregation.


Assuntos
Doença de Alzheimer , Neuroblastoma , Quinolonas , Humanos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Inibidores da Colinesterase/farmacologia , Quinolonas/uso terapêutico , Ácido Aspártico Endopeptidases/metabolismo , Neuroblastoma/tratamento farmacológico , Peptídeos beta-Amiloides/química , Relação Estrutura-Atividade
3.
RSC Med Chem ; 14(12): 2768-2781, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38107179

RESUMO

Malaria is still a complex and lethal parasitic infectious disease, despite the availability of effective antimalarial drugs. Resistance of malaria parasites to current treatments necessitates new antimalarials targeting P. falciparum proteins. The present study reported the design and synthesis of a series of a 2-(4-substituted piperazin-1-yl)-N-(5-((naphthalen-2-yloxy)methyl)-1,3,4-thiadiazol-2-yl)acetamide hybrids for the inhibition of Plasmodium falciparum dihydrofolate reductase (PfDHFR) using computational biology tools followed by chemical synthesis, structural characterization, and functional analysis. The synthesized compounds were evaluated for their in vitro antimalarial activity against CQ-sensitive PfNF54 and CQ-resistant PfW2 strain. Compounds T5 and T6 are the most active compounds having anti-plasmodial activity against PfNF54 with IC50 values of 0.94 and 3.46 µM respectively. Compound T8 is the most active against the PfW2 strain having an IC50 of 3.91 µM. Further, these active hybrids (T5, T6, and T8) were also evaluated for enzyme inhibition assay against PfDHFR. All the tested compounds were non-toxic against the Hek293 cell line with good selectivity indices. Hemolysis assay also showed non-toxicity of these compounds on normal uninfected human RBCs. In silico molecular docking studies were carried out in the binding pocket of both the wild-type and quadruple mutant Pf-DHFR-TS to gain further insights into probable modes of action of active compounds. ADME prediction and physiochemical properties support their drug-likeness. Additionally, they were screened for antileishmanial activity against L. donovani promastigotes to explore broader applications. Thus, this study provides molecular frameworks for developing potent antimalarials and antileishmanial agents.

4.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822182

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, characterized by a gradual and steady deterioration in cognitive function over time. At least 50 million people worldwide are considered to have AD or another form of dementia. AD is marked by a gradual decline in cognitive abilities, memory deterioration and neurodegenerative transformations within the brain. The intricate and multifaceted nature of polygenic AD presents significant challenges within the landscape of drug development. The pathophysiology of AD unfolds in a non-linear and dynamic pattern, encompassing various systems and giving rise to a multitude of factors and hypotheses that contribute to the disease's onset. These encompass theories such as the beta-amyloid hypothesis, cholinergic hypothesis, tau hypothesis, oxidative stress and more. In the realm of drug development, polypharmacological drug profiles have emerged as a strategy that can yield combined or synergistic effects, effectively mitigating undesirable side effects and significantly enhancing the therapeutic efficacy of essential medications. With this concept in mind, our in-silico study sought to delve into the binding interactions of a diverse array of colchicine derivative compounds. These derivatives are chosen for their potential anti-inflammatory, antioxidant, anti-neurodegenerative and neuroprotective properties against Alzheimer's and other neurodegenerative diseases. We investigated compound interactions with AD-related targets, utilizing comprehensive molecular docking and dynamic simulations. COM111X showed impressive docking with acetylcholinesterase, indicating potential as an anti-Alzheimer's drug. COM112Y displayed strong docking scores with PDE4D and butyrylcholinesterase, suggesting dual inhibition for Alzheimer's treatment. Further in vitro and in vivo studies are warranted to explore these findings.Communicated by Ramaswamy H. Sarma.

5.
Eur J Med Chem ; 258: 115564, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37321109

RESUMO

Malaria is a widespread infectious disease, causing nearly 247 million cases in 2021. The absence of a broadly effective vaccine and rapidly decreasing effectiveness of most of the currently used antimalarials are the major challenges to malaria eradication efforts. To design and develop novel antimalarials, we synthesized a series of 4,7-dichloroquinoline and methyltriazolopyrimidine analogues using a multi-component Petasis reaction. The synthesized molecules (11-31) were screened for in-vitro antimalarial activity against drug-sensitive and drug-resistant strains of Plasmodium falciparum with an IC50 value of 0.53 µM. The selected compounds were screened to evaluate in-vitro and in-silico enzyme inhibition efficacy against two cysteine proteases, PfFP2 and PfFP3. The compounds 15 and 17 inhibited PfFP2 with an IC50 = 3.5 and 4.8 µM, respectively and PfFP3 with an IC50 = 4.9 and 4.7 µM, respectively. Compounds 15 and 17 were found equipotent against the Pf3D7 strain with an IC50 value of 0.74 µM, whereas both were displayed IC50 values of 1.05 µM and 1.24 µM for the PfW2 strain, respectively. Investigation of effect of compounds on parasite development demonstrated that compounds were able to arrest the growth of the parasites at trophozoite stage. The selected compounds were screened for in-vitro cytotoxicity against mammalian lines and human red-blood-cell (RBC), which demonstrated no significant cytotoxicity associated with the molecules. In addition, in silico ADME prediction and physiochemical properties supported the drug-likeness of the synthesized molecules. Thus, the results highlighted the diphenylmethylpiperazine group cast on 4,7-dichloroquinoline and methyltriazolopyrimidine using Petasis reaction may serve as models for the development of new antimalarial agents.


Assuntos
Antimaláricos , Cisteína Proteases , Malária , Animais , Humanos , Antimaláricos/química , Malária/tratamento farmacológico , Plasmodium falciparum , Eritrócitos , Mamíferos
6.
RSC Adv ; 13(28): 19119-19129, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37383684

RESUMO

Here, we outline the synthesis of a few 2-methoxy-6-((4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)(phenyl)methyl)phenol derivatives and assess their anti-inflammatory activity in macrophage cells that have been stimulated by LPS. Among these newly synthesized morpholinopyrimidine derivatives, 2-methoxy-6-((4-methoxyphenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)phenol (V4) and 2-((4-fluorophenyl)(4-(6-morpholinopyrimidin-4-yl)piperazin-1-yl)methyl)-6-methoxyphenol (V8) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our findings also showed that compounds V4 and V8 dramatically reduced iNOS and cyclooxygenase mRNA expression (COX-2) in LPS-stimulated RAW 264.7 macrophage cells; western blot analysis showed that the test compounds decreased the amount of iNOS and COX-2 protein expression, hence inhibiting the inflammatory response. We find through molecular docking studies that the chemicals had a strong affinity for the iNOS and COX-2 active sites and formed hydrophobic interactions with them. Therefore, use of these compounds could be suggested as a novel therapeutic strategy for inflammation-associated disorders.

7.
Eur J Med Chem ; 254: 115354, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043996

RESUMO

Multi-target directed ligands (MTDLs) have recently attracted significant interest due to their exceptional effectiveness against multi-factorial Alzheimer's disease. The present work described the development of pyrazine-based MTDLs using multicomponent Petasis reaction for the dual inhibition of tau-aggregation and human acetylcholinesterase (hAChE). The molecular structure of synthesized ligands was validated by 1H & 13C NMR and mass spectrometry. The screened compounds were shown to have a strong inhibitory effect at 10 µM concentration against tau-oligomerization and hAChE, but only moderate inhibitory activity against Aß42. Among all the compounds, the half-maximal inhibitory concentration (IC50) for 21 and 24 against hAChE were 0.71 µM and 1.09 µM, respectively, while they displayed half-maximal effective concentrations (EC50) values of 2.21 µM and 2.71 µM for cellular tau-oligomerization, respectively. Additionally, an MTT experiment using tau-expressing SH-SY5Y neuroblastoma cells revealed that 21 was more neuroprotective than the FDA-approved medication donepezil. Furthermore, an MD simulation study was performed to investigate the dynamics and stability of AChE-21 and AChE-24 complexes in an aqueous environment. The MM-PBSA calculations were performed to evaluate the binding of 21 and 24 with AChE, and the relative binding energy was calculated as -870.578 and -875.697 kJ mol-1, respectively. As a result, the study offered insight into the design of new MTDLs and highlighted 21 as a potential roadblock to the development of anti-AD medications.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Neuroblastoma/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Peptídeos beta-Amiloides/metabolismo
8.
J Biomol Struct Dyn ; 41(24): 15485-15506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970842

RESUMO

Malaria still threatens half the globe population despite successful Artemisinin-based combination therapy. One of the reasons for our inability to eradicate malaria is the emergence of resistance to current antimalarials. Thus, there is a need to develop new antimalarials targeting Plasmodium proteins. The present study reported the design and synthesis of 4, 6 and 7-substituted quinoline-3-carboxylates 9(a-o) and carboxylic acids 10(a-b) for the inhibition of Plasmodium N-Myristoyltransferases (NMTs) using computational biology tools followed by chemical synthesis and functional analysis. The designed compounds exhibited a glide score of -9.241 to -6.960 kcal/mol for PvNMT and -7.538 kcal/mol for PfNMT model proteins. Development of the synthesized compounds was established via NMR, HRMS and single crystal X-ray diffraction study. The synthesized compounds were evaluated for their in vitro antimalarial efficacy against CQ-sensitive Pf3D7 and CQ-resistant PfINDO lines followed by cell toxicity evaluation. In silico results highlighted the compound ethyl 6-methyl-4-(naphthalen-2-yloxy)quinoline-3-carboxylate (9a) as a promising inhibitor with a glide score of -9.084 kcal/mol for PvNMT and -6.975 kcal/mol for PfNMT with IC50 values of 6.58 µM for Pf3D7 line. Furthermore, compounds 9n and 9o exhibited excellent anti-plasmodial activity (Pf3D7 IC50 = 3.96, 6.71 µM, and PfINDO IC50 = 6.38, 2.8 µM, respectively). The conformational stability of 9a with the active site of the target protein was analyzed through MD simulation and was found concordance with in vitro results. Thus, our study provides scaffolds for the development of potent antimalarials targeting both Plasmodium vivax and Plasmodium falciparum.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária , Parasitos , Quinolinas , Animais , Antimaláricos/química , Quinolinas/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Plasmodium falciparum
9.
Eur J Med Chem ; 248: 115055, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621136

RESUMO

Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.


Assuntos
Antimaláricos , Plasmodium , Humanos , Antimaláricos/química , Simulação de Acoplamento Molecular , Plasmodium falciparum/metabolismo , Pirimidinas/química
10.
Pharm Res ; 40(1): 167-185, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36376607

RESUMO

OBJECTIVE: Neuroprotection is a precise target for the treatment of neurodegenerative diseases, ischemic stroke, and traumatic brain injury. Pyrimidine and its derivatives have been proven to use antiviral, anticancer, antioxidant, and antimicrobial activity prompting us to study the neuroprotection and anti-inflammatory activity of the triazole-pyrimidine hybrid on human microglia and neuronal cell model. METHODS: A series of novel triazole-pyrimidine-based compounds were designed, synthesized and characterized by mass spectra, 1HNMR, 13CNMR, and a single X-Ray diffraction analysis. Further, the neuroprotective, anti-neuroinflammatory activity was evaluated by cell viability assay (MTT), Elisa, qRT-PCR, western blotting, and molecular docking. RESULTS: The molecular results revealed that triazole-pyrimidine hybrid compounds have promising neuroprotective and anti-inflammatory properties. Among the 14 synthesized compounds, ZA3-ZA5, ZB2-ZB6, and intermediate S5 showed significant anti-neuroinflammatory properties through inhibition of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated human microglia cells. From 14 compounds, six (ZA2 to ZA6 and intermediate S5) exhibited promising neuroprotective activity by reduced expression of the endoplasmic reticulum (ER) chaperone, BIP, and apoptosis marker cleaved caspase-3 in human neuronal cells. Also, a molecular docking study showed that lead compounds have favorable interaction with active residues of ATF4 and NF-kB proteins. CONCLUSION: The possible mechanism of action was observed through the inhibition of ER stress, apoptosis, and the NF-kB inflammatory pathway. Thus, our study strongly indicates that the novel scaffolds of triazole-pyrimidine-based compounds can potentially be developed as neuroprotective and anti-neuroinflammatory agents.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Humanos , NF-kappa B/metabolismo , Triazóis/farmacologia , Triazóis/metabolismo , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Microglia/patologia , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Lipopolissacarídeos/farmacologia
11.
Eur J Med Chem ; 243: 114793, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36201858

RESUMO

With an aim to develop novel potential antitumor agents, two series of benzene- and benzothiazole-sulfonamide derivatives, acting as effective human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors, have been developed using the tail approach. The synthesized compounds (XS-1 to XS-22) were assayed for the inhibition of physiologically relevant isoforms of hCA, the cytosolic CA I and II, the membrane-bound CA IV and tumor-associated CA IX. It was found the compounds of both series displayed low to medium nanomolar range inhibition against CA I, II and IX, and weak inhibition against CA IV. Some of the derivatives displayed selective inhibition towards tumor-associated CA IX isoform, within the nanomolar range. These potent compounds were also screened for their selective toxicity to evaluate their in vitro anti-proliferative effects on Human Gingival Fibroblasts (HGFs) and breast adenocarcinoma cell line (MCF7). Lastly, molecular docking studies were carried out to explain those structural requirements that were liable for the discrimination among selected human carbonic anhydrase isoforms.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica I/metabolismo , Inibidores da Anidrase Carbônica/química , Benzeno/farmacologia , Anidrase Carbônica II/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Neoplasias/tratamento farmacológico , Benzotiazóis/farmacologia , Isoformas de Proteínas/metabolismo
12.
RSC Med Chem ; 13(3): 258-279, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35434628

RESUMO

Neurodegenerative disorders, i.e., Alzheimer's or Parkinson's disease, involve progressive degeneration of the central nervous system, resulting in memory loss and cognitive impairment. The intensification of neurodegenerative research in recent years put some molecules into clinical trials, but still there is an urgent need to develop effective therapeutic molecules to combat these diseases. Chromone is a well-identified privileged structure for the design of well-diversified therapeutic molecules of potential pharmacological interest, particularly in the field of neurodegeneration. In this short review, we focused on the recent advancements and developments of chromones for neurodegenerative therapeutics. Different small molecules were reviewed as multi-target-directed ligands (MTDLs) with potential inhibition of AChE, BuChE, MAO-A, MAO-B, Aß plaque formation and aggregation. Recently developed MTDLs emphasized that the chromone scaffold has the potential to develop new molecules for the treatment of neurodegenerative diseases.

13.
Bioorg Chem ; 116: 105354, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562674

RESUMO

Development of multitargeted ligands have demonstrated remarkable efficiency as potential therapeutics for Alzheimer's disease (AD). Herein, we reported a new series of deoxyvasicinone analogues as dual inhibitor of acetylcholinesterase (AChE) and tau aggregation that function as multitargeted ligands for AD. All the multitargeted ligands 11(a-j) and 15(a-g) were designed, synthesized, and validated by 1HNMR, 13CNMR and mass spectrometry. All the synthesized compounds 11(a-j) and 15(a-g) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. All the screened compounds possessed weak inhibition of BACE-1, Aß42 and α-syn aggregation. However, several compounds were identified as potential hits in the AChE inhibitory screening assay and cellular tau aggregation screening. Among all compounds, 11f remarkably inhibited AChE activity and cellular tau oligomerization at single-dose screening (10 µM). Moreover, 11f displayed a half-maximal inhibitory concentration (IC50) value of 0.91 ± 0.05 µM and half-maximal effective concentration (EC50) value of 3.83 ± 0.51 µM for the inhibition of AChE and cellular tau oligomerization, respectively. In addition, the neuroprotective effect of 11f was determined in tau-expressing SH-SY5Y cells incubated with Aß oligomers. These findings highlighted the potential of 11f to function as a multifunctional ligand for the development of promising anti-AD drugs.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinazolinas/farmacologia , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Proteínas tau/metabolismo
14.
RSC Med Chem ; 12(6): 970-981, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34223162

RESUMO

Effective chemotherapy is essential for controlling malaria. However, resistance of Plasmodium falciparum to existing antimalarial drugs has undermined attempts to control and eventually eradicate the disease. In this study, a series of 2-((substituted)(4-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)piperazin-1-yl)methyl)-6-substitutedphenol derivatives were prepared using Petasis reaction with a view to evaluate their activities against P. falciparum. The development of synthesized compounds (F1-F16) was justified through the study of H1 NMR, C13 NMR, mass spectra. Compound F1 and F2 were also structurally validated by single crystal X-ray diffraction analysis. All the compounds were evaluated for their in vitro antiplasmodial assessment against the W2 strain (chloroquine-resistant) of P. falciparum IC50 values ranging from 0.74-6.4 µM. Two compounds, F4 and F16 exhibited significant activity against W2 strain of P. falciparum with 0.75 and 0.74 µM. The compounds (F3-F6 and F16) were also evaluated for in vitro cytotoxicity against two cancer cell lines, human lung (A549) and cervical (HeLa) cells, which demonstrated non-cytotoxicity with significant selectivity indices. In addition, in silico ADME profiling and physiochemical properties predicts drug-like properties with a very low toxic effect. Thus, all these results indicate that tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine scaffolds may serve as models for the development of antimalarial agents.

15.
Bioorg Med Chem Lett ; 48: 128249, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237441

RESUMO

A series of new triazole-sulfonamide bearing pyrimidine derivatives were designed and synthesized via click chemistry. All new compounds (SH-1 to SH-28) were validated by 1HNMR, 13CNMR, HRMS, and SH-3 was further structurally validated by X-Ray single diffraction study. These compounds (SH-1 to SH-28) were tested as inhibitors of human carbonic anhydrase (hCA) isoforms, such as hCA I, II, IX and XII, using a stopped flow CO2 hydrase assay. Most of the compounds exhibited significant inhibitory activity against hCA II and weak inhibitory activity against hCA I. The target compounds also displayed moderate to excellent inhibitory activity against tumor-related hCAs IX and XII. Some compounds, e.g., SH-20 (Ki = 9.4 nM), SH-26 (Ki = 1.8 nM) and SH-28 (Ki = 0.82 nM) exhibited excellent inhibitory activity and selectivity profile against hCAs XII over IX. SH-23 displayed promising inhibitory activity and selectivity profile against both tumor-related hCAs IX (Ki = 2.9 nM) as well as XII (Ki = 0.82 nM) over hCA I and II. To understand the molecular interactions, molecular docking study of compounds SH-20, SH-23, SH-26 and SH-28 with hCA XII and SH-23 also with hCA IX were performed. The computational study evidenced favorable interaction between the inhibitors and active residues of both proteins. Some of these derivatives are promising leads for the development of selective, anticancer agents based on CA inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Desenho de Fármacos , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Triazóis/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Sulfonamidas/química , Triazóis/química
16.
Eur J Med Chem ; 215: 113224, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582578

RESUMO

Alzheimer's disease (AD) is multifactorial, progressive neurodegeneration with impaired behavioural and cognitive functions. The multitarget-directed ligand (MTDL) strategies are promising paradigm in drug development, potentially leading to new possible therapy options for complex AD. Herein, a series of novel MTDLs phenylsulfonyl-pyrimidine carboxylate (BS-1 to BS-24) derivatives were designed and synthesized for AD treatment. All the synthesized compounds were validated by 1HNMR, 13CNMR, HRMS, and BS-19 were structurally validated by X-Ray single diffraction analysis. To evaluate the plausible binding affinity of designed compounds, molecular docking study was performed, and the result revealed their significant interaction with active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The synthesized compounds displayed moderate to excellent in vitro enzyme inhibitory activity against AChE and BuChE at nanomolar (nM) concentration. Among 24 compounds (BS-1 to BS-24), the optimal compounds (BS-10 and BS-22) displayed potential inhibition against AChE; IC50 = 47.33 ± 0.02 nM and 51.36 ± 0.04 nM and moderate inhibition against BuChE; IC50 = 159.43 ± 0.72 nM and 153.3 ± 0.74 nM respectively. In the enzyme kinetics study, the compound BS-10 displayed non-competitive inhibition of AChE with Ki = 8 nM. Respective compounds BS-10 and BS-22 inhibited AChE-induced Aß1-42 aggregation in thioflavin T-assay at 10 µM and 20 µM, but BS-10 at 10 µM and 20 µM concentrations are found more potent than BS-22. In addition, the aggregation properties were determined by the dynamic light scattering (DLS) and was found that BS-10 and BS-22 could significantly inhibit self-induced as well as AChE-induced Aß1-42 aggregation. The effect of compounds (BS-10 and BS-22) on the viability of MC65 neuroblastoma cells and their capability to cross the blood-brain barrier (BBB) in PAMPA-BBB were further studied. Further, in silico approach was applied to analyze physicochemical and pharmacokinetics properties of the designed compounds via the SwissADME and PreADMET server. Hence, the novel phenylsulfonyl-pyrimidine carboxylate derivatives can act as promising leads in the development of AChE inhibitors and Aß disaggregator for the treatment of AD.


Assuntos
Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Nootrópicos/síntese química , Nootrópicos/metabolismo , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
17.
Org Biomol Chem ; 19(7): 1589-1603, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33527970

RESUMO

A series of triazole-based compounds was synthesized using a click chemistry approach and evaluated for the inhibition of α-synuclein (α-syn) fibrillogenesis and its disaggregation. Compounds Tr3, Tr7, Tr12, Tr15, and Tr16 exhibited good effect in inhibiting α-syn fibrillogenesis confirmed by Thioflavin-T assay and fluorescence microscopy and α-syn disaggregation confirmed by fluorescence microscopy. Molecular docking was used to understand the plausible mechanism of the test compounds for inhibiting the α-syn fibrillogenesis and to verify the in vitro results. Compounds Tr3, Tr7, Tr12, Tr15 and Tr16 showed good binding interactions with the essential amino acid residues of α-syn. The compounds which were found to be good inhibitors or disaggregators had no toxic effects on the SH-SY5Y cell line. These compounds have the potential to be developed as therapeutic interventions against synucleinopathies including Parkinson's disease and Lewy body dementia.


Assuntos
Triazóis/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Química Click , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Imagem Óptica , Agregados Proteicos/efeitos dos fármacos , Triazóis/síntese química , Triazóis/química , Células Tumorais Cultivadas , alfa-Sinucleína/metabolismo
18.
Eur J Med Chem ; 210: 112955, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33131885

RESUMO

Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Malária/parasitologia , Terapia de Alvo Molecular , Plasmodium/fisiologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
19.
Bioorg Chem ; 108: 104514, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33280833

RESUMO

Targeting Falcipain-2 (FP2) for the development of antimalarials is a promising and established concept in antimalarial drug discovery and development. FP2, a member of papain-family cysteine protease of the malaria parasite Plasmodium falciparum holds an important role in hemoglobin degradation pathway. A new series of quinoline carboxamide-based compounds was designed, synthesized and evaluated for antimalarial activity. We integrated molecular hybridization strategy with in-silico drug design to develop FP2 inhibitors. In-vitro results of FP2 inhibition by Qs17, Qs18, Qs20 and Qs21 were found to be in low micromolar range with IC50 4.78, 7.37, 2.14 and 2.64 µM, respectively. Among the 25 synthesized compounds, four compounds showed significant antimalarial activities. These compounds also depicted morphological and food-vacuole abnormalities much better than that of E-64, an established FP2 inhibitor. Overall these aromatic substituted quinoline carboxamides can serve as promising leads for the development of novel antimalarial agents.


Assuntos
Antimaláricos/farmacologia , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Malária Falciparum/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 207: 112705, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961434

RESUMO

Aggregation of α-synuclein (α-syn) is one of the central hypotheses for Parkinson's disease (PD), therefore, its inhibition and disaggregation is an optimistic approach for the treatment of PD. Here, we report design, synthesis and in-vitro efficacy studies of a series of diphenyl triazine hybrids as potential inhibitors of α-syn fibrillogenesis. From the docking studies, we concluded that compounds A1, A2, A4, A8 and A9 display promising binding affinity with the essential residues of α-syn with binding energy values: -6.0, -7.0, -6.3, -6.6 and -6.7 kcal/mol respectively. The target compounds were synthesized using multistep organic synthesis reactions. Compounds A1, A2 A4, A8 and A9 showed a significant lowering of the α-syn fibril formation during Thioflavin-T assay and fluorescence microscopy. In addition, these compounds A1, A2, A4, A8 and A9 also proved to be good disaggregators in the pre-aggregated form of α-syn. Most of the compounds exhibited no cytotoxicity in mouse embryonic fibroblast (MEF) and human adenocarcinomic alveolar basal epithelial cells (A549) except A2. Overall, diphenyl triazine-based compounds can be further investigated for the treatment of synucleinopathies and for Lewy body dementia in which α-syn is predominantly observed.


Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Agregados Proteicos/efeitos dos fármacos , Triazinas/química , Triazinas/farmacologia , alfa-Sinucleína/metabolismo , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Desenho de Fármacos , Humanos , Modelos Moleculares , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA