Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38684472

RESUMO

AIMS: This study aimed to identify specific genomic targets for the detection and strain typing of Map and analyse their sensitivity and specificity, and detect Map directly from faeces. METHODS AND RESULTS: A comparative genomics approach was used to identify specific genomic targets for the detection and strain typing of Map. A Map specific qPCR using the primer pair 7132 that targets a DNA segregation ATPase protein was able to detect all strains of Map and is more sensitive than the current Johne's disease PCR assays with a sensitivity of 0.0002 fg µl-1. A strain specific qPCR using the Atsa primer pair that targets the arylsulfase gene was able to differentiate between Type S and Type C strains of Map and was more sensitive than the IS1311 PCR and REA with a sensitivity of 40 fg µl-1 and was specific for Type S Map. Both assays successfully detected Map directly from faeces. CONCLUSION: This study developed and validated two genomics informed qPCR assays, 7132B Map and Atsa Type S and found both assays to be highly specific and sensitive for the detection of Map from culture and directly from faeces. This is the first time that a probe-based qPCR has been designed and developed for Map strain typing, which will greatly improve the response time during outbreak investigations.


Assuntos
Fezes , Genômica , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Fezes/microbiologia , Animais , Paratuberculose/microbiologia , Paratuberculose/diagnóstico , Bovinos , DNA Bacteriano/genética , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/diagnóstico , Primers do DNA/genética
2.
BMC Genomics ; 24(1): 656, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907856

RESUMO

BACKGROUND: To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species. RESULTS: Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map. Pan-genome analysis revealed that Map has a larger accessory genome than Mycobacterium avium subsp. avium (Maa) and Type C Map has a larger accessory genome than Type S Map. In addition, we found large rearrangements within Type S strains of Map and little to none in Type C and Type B strains. There were 50 core genes identified that were unique to Type S Map and there were no unique core genes identified between Type B and Type C Map strains. In Type C Map we identified an additional CE10 CAZyme class which was identified as an alpha/beta hydrolase and an additional polyketide and non-ribosomal peptide synthetase cluster. Consistent with previous analysis no plasmids and only incomplete prophages were identified in the genomes of Map. There were 45 hypothetical CRISPR elements identified with no associated cas genes. CONCLUSION: This is the most comprehensive comparison of the genomic content of Map isolates to date and included the closing of eight Map genomes. The analysis revealed that there is greater variation in gene synteny within Type S strains when compared to Type C indicating that the Type C Map strain emerged after Type S. Further analysis of Type C and Type B genomes revealed that they are structurally similar with little to no genetic variation and that Type B Map may be a distinct clade within Type C Map and not a different strain type of Map. The evolutionary lineage of Maa and Map was confirmed as emerging after M. hominissuis.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Animais , Mycobacterium avium subsp. paratuberculosis/genética , Filogenia , Genoma , Sintenia , Rearranjo Gênico , Paratuberculose/genética , Mycobacterium avium/genética
3.
BMC Microbiol ; 21(1): 101, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789575

RESUMO

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease (JD), a chronic enteritis widespread in ruminants, resulting in substantial economic losses, especially to the dairy industry. Understanding the genetic diversity of Map in Australia will assist epidemiological studies for tracking disease transmission and identify subtype characteristics for use in development of improved diagnostic typing methods. Here we investigated the phylogenetic relationships of 351 Map isolates and compared different subtyping methods to assess their suitability for use in diagnostics and accuracy. RESULTS: SNP-based phylogenetic analysis of 228 Australian isolates and 123 publicly available international isolates grouped Type S and Type C strains into two distinct lineages. Type C strains were highly monomorphic with only 20 SNP differences separating them. Type S strains, when aligned separately to the Telford strain, fell into two distinct clades: The first clade contained seven international isolates while the second clade contained one international isolate from Scotland and all 59 Australian isolates. The Australian Type B strain clustered with US bison strains. IS1311 PCR and Restriction Enzyme Analysis (REA) intermittently generated incorrect results when compared to Long Sequence Polymorphism (LSP) analysis, whole genome SNP-based phylogenetic analysis, IS1311 sequence alignment and average nucleotide identity (ANI). These alternative methods generated consistent Map typing results. A published SNP based assay for genotyping Map was found to be unsuitable for differentiating between Australian and international strain types of Map. CONCLUSION: This is the first phylogenetic analysis of Australian Map isolates. The Type C lineage was highly monomorphic, and the Type S lineage clustered all Australian isolates into one clade with a single Scottish sheep strain. The Australian isolate classified as Type B by IS1311 PCR and REA is likely to be descended from bison and most closely related to US bison strains. Limitations of the current typing methods were identified in this study.


Assuntos
Variação Genética , Genoma Bacteriano/genética , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/genética , Animais , Austrália , Genótipo , Paratuberculose/microbiologia , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
4.
Prev Vet Med ; 120(3-4): 277-82, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25956134

RESUMO

Although diagnosis of anthrax can be made in the field with a peripheral blood smear, and in the laboratory with bacterial culture or molecular based tests, these tests require either considerable experience or specialised equipment. Here we report on the evaluation of the diagnostic sensitivity and specificity of a simple and rapid in-field diagnostic test for anthrax, the anthrax immunochromatographic test (AICT). The AICT detects the protective antigen (PA) component of the anthrax toxin present within the blood of an animal that has died from anthrax. The test provides a result in 15min and offers the advantage of avoiding the necessity for on-site necropsy and subsequent occupational risks and environmental contamination. The specificity of the test was determined by testing samples taken from 622 animals, not infected with Bacillus anthracis. Diagnostic sensitivity was estimated on samples taken from 58 animals, naturally infected with B. anthracis collected over a 10-year period. All samples used to estimate the diagnostic sensitivity and specificity of the AICT were also tested using the gold standard of bacterial culture. The diagnostic specificity of the test was estimated to be 100% (99.4-100%; 95% CI) and the diagnostic sensitivity was estimated to be 93.1% (83.3-98.1%; 95% CI) (Clopper-Pearson method). Four samples produced false negative AICT results. These were among 9 samples, all of which tested positive for B. anthracis by culture, where there was a time delay between collection and testing of >48h and/or the samples were collected from animals that were >48h post-mortem. A statistically significant difference (P<0.001; Fishers exact test) was found between the ability of the AICT to detect PA in samples from culture positive animals <48h post-mortem, 49 of 49, Se=100% (92.8-100%; 95% CI) compared with samples tested >48h post-mortem 5 of 9 Se=56% (21-86.3%; 95% CI) (Clopper-Pearson method). Based upon these results a post hoc cut-off for use of the AICT of 48h post-mortem was applied, Se=100% (92.8-100%; 95% CI) and Sp=100% (99.4-100%; 95% CI). The high diagnostic sensitivity and specificity and the simplicity of the AICT enables it to be used for active surveillance in areas with a history of anthrax, or used as a preliminary tool in investigating sudden, unexplained death in cattle.


Assuntos
Antraz/veterinária , Antígenos de Bactérias/sangue , Doenças dos Bovinos/diagnóstico , Testes Diagnósticos de Rotina/veterinária , Animais , Antraz/diagnóstico , Antraz/microbiologia , Austrália , Bovinos , Doenças dos Bovinos/microbiologia , Cromatografia de Afinidade/veterinária , Testes Diagnósticos de Rotina/normas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA