Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hematol Oncol Clin North Am ; 38(4): 869-888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782647

RESUMO

Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.


Assuntos
Biomarcadores Tumorais , Detecção Precoce de Câncer , Neoplasias , Humanos , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Biópsia Líquida/métodos
2.
J Vasc Res ; 59(6): 343-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36075199

RESUMO

Adipose-derived stromal vascular fraction (SVF) has emerged as a potential regenerative therapy, but few studies utilize SVF in a setting of advanced age. Additionally, the specific cell population in SVF providing therapeutic benefit is unknown. We hypothesized that aging would alter the composition of cell populations present in SVF and its ability to promote angiogenesis following injury, a mechanism that is T cell-mediated. SVF isolated from young and old Fischer 344 rats was examined with flow cytometry for cell composition. Mesenteric windows from old rats were isolated following exteriorization-induced (EI) hypoxic injury and intravenous injection of one of four cell therapies: (1) SVF from young or (2) old donors, (3) SVF from old donors depleted of or (4) enriched for T cells. Advancing age increased the SVF T-cell population but reduced revascularization following injury. Both young and aged SVF incorporated throughout the host mesenteric microvessels, but only young SVF significantly increased vascular area following EI. This study highlights the effect of donor age on SVF angiogenic efficacy and demonstrates how the ex vivo mesenteric-window model can be used in conjunction with SVF therapy to investigate its contribution to angiogenesis.


Assuntos
Tecido Adiposo , Células Estromais , Ratos , Animais , Fração Vascular Estromal , Ratos Endogâmicos F344 , Microvasos
3.
J Vasc Res ; 59(4): 229-238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462373

RESUMO

Revascularization of transplanted pancreatic islets is critical for survival and treatment of type 1 diabetes. Questions concerning how islets influence local microvascular networks and how networks form connections with islets remain understudied and motivate the need for new models that mimic the complexity of real tissue. Recently, our laboratory established the rat mesentery culture model as a tool to investigate cell dynamics involved in microvascular growth. An advantage is the ability to observe blood vessels, lymphatics, and immune cells. The objective of this study was to establish the rat mesentery tissue culture model as a useful tool to investigate islet tissue integration. DiI-labeled islets were seeded onto adult rat mesentery tissues and cultured for up to 3 days. Live lectin labeling enabled time-lapse observation of vessel growth. During culture, DiI-positive islets remained intact. Radial lectin-positive capillary sprouts with DiI labeling were observed to form from islets and connect to host networks. Lectin-positive vessels from host networks were also seen growing toward islets. PECAM and NG2 labeling confirmed that vessels sprouting from islets contained endothelial cells and pericytes. Our results introduce the rat mesentery culture model as a platform for investigating dynamics associated with the initial revascularization of transplanted islets.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Animais , Lectinas , Microvasos , Neovascularização Patológica , Pericitos , Ratos
4.
Microcirculation ; 29(6-7): e12758, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466504

RESUMO

OBJECTIVE: The objective of the study is to demonstrate the innovation and utility of mesenteric tissue culture for discovering the microvascular growth dynamics associated with adipose-derived stromal vascular fraction (SVF) transplantation. Understanding how SVF cells contribute to de novo vessel growth (i.e., neovascularization) and host network angiogenesis motivates the need to make observations at single-cell and network levels within a tissue. METHODS: Stromal vascular fraction was isolated from the inguinal adipose of adult male Wistar rats, labeled with DiI, and seeded onto adult Wistar rat mesentery tissues. Tissues were then cultured in MEM + 10% FBS for 3 days and labeled for BSI-lectin to identify vessels. Alternatively, SVF and tissues from green fluorescent-positive (GFP) Sprague Dawley rats were used to track SVF derived versus host vasculature. RESULTS: Stromal vascular fraction-treated tissues displayed a dramatically increased vascularized area compared to untreated tissues. DiI and GFP+ tracking of SVF identified neovascularization involving initial segment formation, radial outgrowth from central hub-like structures, and connection of segments. Neovascularization was also supported by the formation of segments in previously avascular areas. New segments characteristic of SVF neovessels contained endothelial cells and pericytes. Additionally, a subset of SVF cells displayed the ability to associate with host vessels and the presence of SVF increased host network angiogenesis. CONCLUSIONS: The results showcase the use of the rat mesentery culture model as a novel tool for elucidating SVF cell transplant dynamics and highlight the impact of model selection for visualization.


Assuntos
Células Endoteliais , Células Estromais , Ratos , Masculino , Animais , Fração Vascular Estromal , Ratos Sprague-Dawley , Ratos Wistar , Microvasos , Tecido Adiposo/irrigação sanguínea , Neovascularização Patológica , Mesentério
5.
Methods Mol Biol ; 2441: 157-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099735

RESUMO

Stromal vascular fraction (SVF), isolated from adipose tissue, identifies as a rich cell source comprised of endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. SVF represents a promising therapeutic heterogonous cell source for growing new blood microvessels due to its rich niche of cells. However, the spatiotemporal dynamics of SVF within living tissues remain largely unknown. The objective of this chapter is to describe a protocol for culturing SVF on mouse mesentery tissues in order to aid in the discovery of SVF dynamics and associated vessel growth over time. SVF was isolated from the inguinal adipose from adult mice and seeded onto mesentery tissues. Tissues were then cultured for up to 5 days and labeled with endothelial cell and pericyte markers. Representative results demonstrate the observation of SVF-derived vasculogenesis characterized by de novo vessel formation and subsequent vessel connection.


Assuntos
Células Endoteliais , Células Estromais , Tecido Adiposo , Animais , Células Cultivadas , Mesentério , Camundongos , Fração Vascular Estromal
6.
Biomaterials ; 278: 121127, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34564034

RESUMO

The success of total joint replacements has led to consistent growth in the use of arthroplasty in progressively younger patients. However, more than 10 percent of patients require revision surgeries due to implant failure caused by osteolytic loosening. These failures are classified as either aseptic or septic and are associated with the presence of particulate wear debris generated by mechanical action between implant components. Aseptic loosening results from chronic inflammation caused by activation of resident immune cells in contact with implant wear debris. In contrast, septic loosening is defined by the presence of chronic infection at the implant site. However, recent findings suggest that subclinical biofilms may be overlooked when evaluating the cause of implant failure, leading to a misdiagnosis of aseptic loosening. Many of the inflammatory pathways contributing to periprosthetic joint infections are also involved in bone remodeling and resorption. In particular, wear debris is increasingly implicated in the inhibition of the innate and adaptive immune response to resolve an infection or prevent hematogenous spread. This review examines the interconnectivity of wear particle- and infection-associated mechanisms of implant loosening, as well as biomaterials-based strategies to combat infection-related osteolysis.


Assuntos
Materiais Biocompatíveis , Osteólise , Humanos , Inflamação/etiologia , Osteólise/etiologia , Próteses e Implantes
7.
Microcirculation ; 28(3): e12672, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33174272

RESUMO

Restoration of form and function requires apposition of tissues in the form of flaps to reconstitute local perfusion. Successful reconstruction relies on flap survival and its integration with the recipient bed. The flap's precariously perfused hypoxic areas undergo adaptive microvascular changes both internally and in connection with the recipient bed. A cell-mediated, coordinated response to hypoxia drives these adaptive processes, restoring a tissue's normoxic homeostasis via de novo vasculogenesis, sprouting angiogenesis, and stabilizing arterialization. As cells exert prolonged and coordinated effects on site, their use as biological agents merit translational consideration of sourcing angio-competent cells and delivering them to territories enduring microcirculatory acclimatization. Angio-competent cells abound in adipose tissue: a reliable, accessible, and expendable source of adipose-derived cells (ADC). When subject to enzymatic digestion and centrifugation, adipose tissue separates its various ADC: A subset of buoyant oil-dense adipocytes (the tissue's parenchymal component) accumulates on a supra-natant layer, whereas the mesenchymal component remains in the infra-natant sediment, containing the tissue's stromal vascular fraction (SVF), where angio-component cells abound. The SVF can be further manipulated, selected, or culture expanded into more specific stromal subsets (herein defined as adipose stromal cells, ASC). While promising clinical applications for ADC await clinical proof and regulatory authorization, basic science investigation is needed to elucidate the specific ADC mechanisms that influence microvascular growth, remodeling, and function following flap surgery. The objective of this article is to share the clinical perspectives of reconstructive plastic surgeons regarding the use of ADC-based therapies to help with flap tissue integration, revascularization, and wound healing. Specifically, the focus will be on considering the potential for ADC as therapeutic agents and how their clinical application motivates basic science opportunities.


Assuntos
Procedimentos de Cirurgia Plástica , Fração Vascular Estromal , Adipócitos , Tecido Adiposo , Terapia Baseada em Transplante de Células e Tecidos , Microcirculação
8.
J Neurosci Methods ; 346: 108923, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888964

RESUMO

BACKGROUND: Neurovascular patterning is an emerging area of microvascular research. While overlapping molecular signals highlight links between angiogenesis and neurogenesis, advancing our understanding is limited by a lack of in vitro models containing both systems. One potential model is the rat mesentery culture model, which our laboratory has recently introduced as an ex vivo tool to investigate cellular dynamics during angiogenesis in a microvascular network scenario. The objective of this study was to demonstrate the use of the rat mesentery culture model as an ex vivo platform for maintaining the spatiotemporal relationship between blood vessels and peripheral nerves during angiogenesis in adult microvascular networks. METHODS: Adult male Wistar rat mesenteric tissue windows were harvested, rinsed in sterile DPBS and medium and then cultured per group: 1) MEM alone and 2) NBM with NGF and 20 % FBS (nerve culture medium). On day 3 post culture tissues were labeled for endothelial (PECAM) and neural (class III ß-tubulin, NG2, tyrosine hydroxylase, CGRP) markers. RESULTS: In MEM alone tissues nerve segment degeneration was supported by discontinuous nerve or absence of nerve marker labeling. Nerve presence at the arteriole level and capillary level was maintained for the nerve culture medium group compared to day 0, non-cultured control group (unstimulated). COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: The results support the use of specific medium types to maintain nerve presence across cultured microvascular networks and implicates the rat mesentery culture model as a novel ex vivo tool for investigating neurovascular patterning in adult tissues.


Assuntos
Microvasos , Neovascularização Fisiológica , Animais , Masculino , Mesentério , Nervos Periféricos , Ratos , Ratos Wistar
9.
Geroscience ; 42(2): 515-526, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32206968

RESUMO

In vitro models of angiogenesis are valuable tools for understanding the underlying mechanisms of pathological conditions and for the preclinical evaluation of therapies. Our laboratory developed the rat mesentery culture model as a new tool for investigating mechanistic cell-cell interactions at specific locations across intact blood and lymphatic microvascular networks ex vivo. The objective of this study was to report a method for evaluating the effect of aging on human stem cell differentiation into pericytes during angiogenesis in cultured microvascular networks. DiI labeled exogenous stem cells were seeded onto harvested adult Wistar rat mesenteric tissues and cultured in alpha-MEM + 1% serum for up to 5 days according to four experimental groups: (1) adult human adipose-derived stem cells (hASCs), (2) aged hASCs, (3) adult human bone marrow-derived stem cells (hBMSCs), and (4) aged hBMSCs. Angiogenesis per experimental group was supported by observation of increased vessel density and capillary sprouting. For each tissue per experimental group, a subset of cells was observed in typical pericyte location wrapped along blood vessels. Stem cell differentiation into pericytes was supported by the adoption of elongated pericyte morphology along endothelial cells and positive NG2 labeling. The percentage of cells in pericyte locations was not significantly different across the experimental groups, suggesting that aged mesenchymal stem cells are able to retain their differentiation capacity. Our results showcase an application of the rat mesentery culture model for aging research and the evaluation of stem cell fate within intact microvascular networks.


Assuntos
Envelhecimento , Células Endoteliais , Neovascularização Fisiológica , Células-Tronco , Animais , Diferenciação Celular , Microvasos , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos
10.
Microcirculation ; 27(2): e12595, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31584728

RESUMO

OBJECTIVE: Emerging areas of vascular biology focus on lymphatic/blood vessel mispatterning and the regulation of endothelial cell identity. However, a fundamental question remains unanswered: Can lymphatic vessels become blood vessels in adult tissues? Leveraging a novel tissue culture model, the objective of this study was to track lymphatic endothelial cell fate over the time course of adult microvascular network remodeling. METHODS: Cultured adult Wistar rat mesenteric tissues were labeled with BSI-lectin and time-lapse images were captured over five days of serum-stimulated remodeling. Additionally, rat mesenteric tissues on day 0 and day 3 and 5 post-culture were labeled for PECAM + LYVE-1 or PECAM + podoplanin. RESULTS: Cultured networks were characterized by increases in blood capillary sprouting, lymphatic sprouting, and the number of lymphatic/blood vessel connections. Comparison of images from the same network regions identified incorporation of lymphatic vessels into blood vessels. Mosaic lymphatic/blood vessels contained lymphatic marker positive and negative endothelial cells. CONCLUSIONS: Our results reveal the ability for lymphatic vessels to transition into blood vessels in adult microvascular networks and discover a new paradigm for investigating lymphatic/blood endothelial cell dynamics during microvascular remodeling.


Assuntos
Capilares/diagnóstico por imagem , Células Endoteliais/citologia , Vasos Linfáticos/diagnóstico por imagem , Modelos Cardiovasculares , Remodelação Vascular , Animais , Capilares/metabolismo , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Ratos , Ratos Wistar
11.
J Appl Physiol (1985) ; 125(6): 1843-1850, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648521

RESUMO

Microvascular network growth and remodeling are common denominators for most age-related pathologies. For multiple pathologies (myocardial infarction, stroke, hypertension), promoting microvascular growth, termed angiogenesis, would be beneficial. For others (cancer, retinopathies, rheumatoid arthritis), blocking angiogenesis would be desirable. Most therapeutic strategies, however, are motivated based on studies using adult animal models. This approach is problematic and does not account for the impaired angiogenesis or the inherent network structure changes that might result from age. Considering the common conception that angiogenesis is impaired with age, a need exists to identify the causes and mechanisms of angiogenesis in aged scenarios and for new tools to enable comparison of aged versus adult responses to therapy. The objective of this article is to introduce opportunities for advancing our understanding of angiogenesis in aging through the discovery of novel cell changes along aged microvascular networks and the development of novel ex vivo models.


Assuntos
Envelhecimento/fisiologia , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Humanos , Microvasos , Pericitos/fisiologia , Técnicas de Cultura de Tecidos
12.
Sci Rep ; 7(1): 2195, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526859

RESUMO

An emerging challenge in tissue engineering biomimetic models is recapitulating the physiological complexity associated with real tissues. Recently, our laboratory introduced the rat mesentery culture model as an ex vivo experimental platform for investigating the multi-cellular dynamics involved in angiogenesis within an intact microvascular network using time-lapse imaging. A critical question remains whether the vessels maintain their functionality. The objective of this study was to determine whether vascular smooth muscle cells in cultured microvascular networks maintain the ability to constrict. Adult rat mesenteric tissues were harvested and cultured for three days in either MEM or MEM plus 10% serum. On Day 0 and Day 3 live microvascular networks were visualized with FITC conjugated BSI-lectin labeling and arteriole diameters were compared before and five minutes after topical exposure to vasoconstrictors (50 mM KCl and 20 nM Endothelin-1). Arterioles displayed a vasoconstriction response to KCl and endothelin for each experimental group. However, the Day 3 serum cultured networks were angiogenic, characterized by increased vessel density, and displayed a decreased vasoconstriction response compared to Day 0 networks. The results support the physiological relevance of the rat mesentery culture model as a biomimetic tool for investigating microvascular growth and function ex vivo.


Assuntos
Arteríolas/citologia , Microvasos , Modelos Biológicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Animais , Masculino , Mesentério , Neovascularização Fisiológica , Ratos , Imagem com Lapso de Tempo , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA