Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 56(18): 13019-13028, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053064

RESUMO

The Deepwater Horizon (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi (Coryphaena hippurus)─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure. However, more than a decade postspill, impacts on wild populations remain unknown. To address this gap, we exposed wild mahi-mahi to crude oil or control conditions onboard a research vessel, collected fin clip samples, and tagged them with electronic tags prior to release into the GOM. We demonstrate profound effects on survival and reproduction in the wild. In addition to significant changes in gene expression profiles and predation mortality, we documented altered acceleration and habitat use in the first 8 days oil-exposed individuals were at liberty as well as a cessation of apparent spawning activity for at least 37 days. These data reveal that even a brief and low-dose exposure to crude oil impairs fitness in wild mahi-mahi. These findings offer new perspectives on the lasting impacts of the DWH blowout and provide insight about the impacts of future deep-sea oil spills.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Golfo do México , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/metabolismo
2.
Mar Environ Res ; 139: 129-135, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29778443

RESUMO

This study examined potential interactive effects of co-exposure to Deepwater Horizon (DWH) crude oil (∼30 µg L-1 ΣPAHs) for 24 h and either hypoxia (2.5 mg O2 L-1; 40% O2 saturation) or elevated temperature (30 °C) on the swimming performance of juvenile mahi-mahi (Coryphaena hippurus). Additionally, effects of shorter duration exposures to equal or higher doses of oil alone either prior to swimming or during the actual swim trial itself were examined. Only exposure to hypoxia alone or combined with crude oil elicited significant decreases in critical swimming speed (Ucrit) and to a similar extent (∼20%). In contrast, results indicate that elevated temperature might ameliorate some effects of oil exposure on swimming performance and that effects of shorter duration exposures are either reduced or delayed.


Assuntos
Perciformes/fisiologia , Poluição por Petróleo , Petróleo/toxicidade , Temperatura , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero , Monitoramento Ambiental , Hipóxia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Natação
3.
Environ Toxicol Chem ; 36(7): 1887-1895, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28128479

RESUMO

Windows of exposure to a weathered Deepwater Horizon oil sample (slick A) were examined for early life stage mahi-mahi (Coryphaena hippurus) to determine whether there are developmental periods of enhanced sensitivity during the course of a standard 96-h bioassay. Survival was assessed at 96 h following oil exposures ranging from 2 h to 96 h and targeting 3 general periods of development, namely the prehatch phase, the period surrounding hatch, and the posthatch phase. In addition, 3 different oil preparations were used: high- and low-energy water accommodated fractions of oil and very thin surface slicks of oil (∼1 µm). The latter 2 were used to distinguish between effects due to direct contact with the slick itself and the water underlying the slick. Considering the data from all 3 exposure regimes, it was determined that the period near or including hatch was likely the most sensitive. Furthermore, toxicity was not enhanced by direct contact with slick oil. These findings are environmentally relevant given that the concentrations of polycyclic aromatic hydrocarbons eliciting mortality from exposures during the sensitive periods of development were below or near concentrations measured during the active spill phase. Environ Toxicol Chem 2017;36:1887-1895. © 2016 SETAC.


Assuntos
Perciformes/crescimento & desenvolvimento , Petróleo/análise , Animais , Bioensaio , Estágios do Ciclo de Vida/efeitos dos fármacos , Petróleo/toxicidade , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
4.
Aquat Toxicol ; 180: 274-281, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27768947

RESUMO

Exposure to polycyclic aromatic hydrocarbons (PAH) negatively impacts exercise performance in fish species but the physiological modifications that result in this phenotype are poorly understood. Prior studies have shown that embryonic and juvenile mahi-mahi (Coryphaeus hippurus) exposed to PAH exhibit morphological abnormalities, altered cardiac development and reduced swimming performance. It has been suggested that cardiovascular function inhibited by PAH exposure accounts for the compromised exercise performance in fish species. In this study we used in-situ techniques to measure hemodynamic responses of young adult mahi-mahi exposed to PAH for 24h. The data indicate that stroke volume was reduced 44% in mahi-mahi exposed to 9.6±2.7µgl-1 geometric mean PAH (∑PAH) and resulted in a 39% reduction in cardiac output and a 52% reduction in stroke work. Maximal change in pressure over change in time was 28% lower in mahi-mahi exposed to this level of ∑PAH. Mean intraventricular pressures and heart rate were not significantly changed. This study suggests exposure to environmentally relevant PAH concentrations impairs aspects of cardiovascular function in mahi-mahi.


Assuntos
Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Perciformes/fisiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Coração/fisiopatologia , Hemodinâmica/fisiologia , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos , Testes de Toxicidade
5.
Chemosphere ; 162: 261-8, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27505137

RESUMO

Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish. Using this unique recirculating upwelling system, it was possible to significantly improve control survival in pelagic fish ELS bioassays compared to commonly used static exposure methods. Results demonstrate that control performance of mahi-mahi (Coryphaena hippurus) embryos in the PELEC system, measured as percent survival after 96-hrs, significantly outperformed agitated static exposure and static exposure systems. Similar significant improvements in 72-hr control survival were obtained with yellowfin tuna (Thunnus albacares). The PELEC system was subsequently used to test the effects of photo-induced toxicity of crude oil to mahi-mahi ELSs over the course of 96-hrs. Results indicate a greater than 9-fold increase in toxicity of Deepwater Horizon (DWH) crude oil during co-exposure to ambient sunlight compared to filtered ambient sunlight, revealing the importance of including natural sunlight in 96-hr DWH crude oil bioassays as well as the PELEC system's potential application in ecotoxicological assessments.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Perciformes/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/citologia , Larva/crescimento & desenvolvimento , Testes de Toxicidade , Poluentes Químicos da Água/química
6.
Environ Toxicol Chem ; 35(10): 2613-2622, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27018209

RESUMO

The temporal and geographic attributes of the Deepwater Horizon incident in 2010 likely exposed pelagic game fish species, such as mahi-mahi, to crude oil. Although much of the research assessing the effects of the spill has focused on early life stages of fish, studies examining whole-animal physiological responses of adult marine fish species are lacking. Using swim chamber respirometry, the present study demonstrates that acute exposure to a sublethal concentration of the water accommodated fraction of Deepwater Horizon crude oil results in significant swim performance impacts on young adult mahi-mahi, representing the first report of acute sublethal toxicity on adult pelagic fish in the Gulf of Mexico following the spill. At an exposure concentration of 8.4 ± 0.6 µg L-1 sum of 50 selected polycyclic aromatic hydrocarbons (PAHs; mean of geometric means ± standard error of the mean), significant decreases in the critical and optimal swimming speeds of 14% and 10%, respectively (p < 0.05), were observed. In addition, a 20% reduction in the maximum metabolic rate and a 29% reduction in aerobic scope resulted from exposure to this level of ΣPAHs. Using environmentally relevant crude oil exposure concentrations and a commercially and ecologically valuable Gulf of Mexico fish species, the present results provide insight into the effects of the Deepwater Horizon oil spill on adult pelagic fish. Environ Toxicol Chem 2016;35:2613-2622. © 2016 SETAC.


Assuntos
Perciformes/fisiologia , Poluição por Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Natação , Poluentes Químicos da Água/toxicidade , Animais , Metabolismo Energético/efeitos dos fármacos , Monitoramento Ambiental/métodos , Golfo do México , Perciformes/metabolismo , Natação/fisiologia
7.
Environ Sci Technol ; 50(4): 2011-7, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26784438

RESUMO

The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions barrels of crude oil into the Gulf of Mexico. Photoinduced toxicity following coexposure to ultraviolet (UV) radiation is one mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Mahi-mahi (Coryphaena hippurus), an important fishery resource, have positively buoyant, transparent eggs. These characteristics may result in mahi-mahi embryos being at particular risk from photoinduced toxicity. The goal of this study was to determine whether exposure to ultraviolet radiation as natural sunlight enhances the toxicity of crude oil to embryonic mahi-mahi. Mahi-mahi embryos were exposed to several dilutions of water accommodated fractions (WAF) from slick oil collected during the 2010 spill and gradations of natural sunlight in a fully factorial design. Here, we report that coexposure to natural sunlight and WAF significantly reduced percent hatch in mahi-mahi embryos. Effect concentrations of PAH in WAF were within the range of surface PAH concentrations reported in the Gulf of Mexico during the Deepwater Horizon spill. These data suggest that laboratory toxicity tests that do not include UV may underestimate the toxicity of oil spills to early lifestage fish species.


Assuntos
Ecotoxicologia/métodos , Perciformes/embriologia , Petróleo/toxicidade , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , México , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Luz Solar
8.
Sci Total Environ ; 543(Pt A): 644-651, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26613518

RESUMO

To better understand the impact of the Deepwater Horizon (DWH) incident on commercially and ecologically important pelagic fish species, a mahi-mahi spawning program was developed to assess the effect of embryonic exposure to DWH crude oil with particular emphasis on the effects of weathering and dispersant on the magnitude of toxicity. Acute lethality (96 h LC50) ranged from 45.8 (28.4-63.1) µg l(-1) ΣPAH for wellhead (source) oil to 8.8 (7.4-10.3) µg l(-1) ΣPAH for samples collected from the surface slick, reinforcing previous work that weathered oil is more toxic on a ΣPAH basis. Differences in toxicity appear related to the amount of dissolved 3 ringed PAHs. The dispersant Corexit 9500 did not influence acute lethality of oil preparations. Embryonic oil exposure resulted in cardiotoxicity after 48 h, as evident from pericardial edema and reduced atrial contractility. Whereas pericardial edema appeared to correlate well with acute lethality at 96 h, atrial contractility did not. However, sub-lethal cardiotoxicity may impact long-term performance and survival. Dispersant did not affect the occurrence of pericardial edema; however, there was an apparent reduction in atrial contractility at 48 h of exposure. Pericardial edema at 48 h and lethality at 96 h were equally sensitive endpoints in mahi-mahi.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Monitoramento Ambiental , Perciformes/fisiologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Lipídeos/química , Perciformes/embriologia , Petróleo/análise , Poluição por Petróleo/análise , Poluição por Petróleo/estatística & dados numéricos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
9.
Environ Sci Technol ; 48(12): 7053-61, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24857158

RESUMO

The Deepwater Horizon incident likely resulted in exposure of commercially and ecologically important fish species to crude oil during the sensitive early life stages. We show that brief exposure of a water-accommodated fraction of oil from the spill to mahi-mahi as juveniles, or as embryos/larvae that were then raised for ∼25 days to juveniles, reduces their swimming performance. These physiological deficits, likely attributable to polycyclic aromatic hydrocarbons (PAHs), occurred at environmentally realistic exposure concentrations. Specifically, a 48 h exposure of 1.2 ± 0.6 µg L(-1) ΣPAHs (geometric mean ± SEM) to embryos/larvae that were then raised to juvenile stage or a 24 h exposure of 30 ± 7 µg L(-1) ΣPAHs (geometric mean ± SEM) directly to juveniles resulted in 37% and 22% decreases in critical swimming velocities (Ucrit), respectively. Oil-exposed larvae from the 48 h exposure showed a 4.5-fold increase in the incidence of pericardial and yolk sac edema relative to controls. However, this larval cardiotoxicity did not manifest in a reduced aerobic scope in the surviving juveniles. Instead, respirometric analyses point to a reduction in swimming efficiency as a potential alternative or contributing mechanism for the observed decreases in Ucrit.


Assuntos
Embrião não Mamífero/fisiologia , Perciformes/embriologia , Perciformes/fisiologia , Poluição por Petróleo , Petróleo/toxicidade , Natação/fisiologia , Testes de Toxicidade Aguda , Aerobiose/efeitos dos fármacos , Animais , Metabolismo Basal/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Fracionamento Químico , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Springerplus ; 2: 634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324928

RESUMO

Growth rates of larval and juvenile bigeye scad Selar crumenophthalmus reared in captivity were studied. The results are presented, discussed, and compared to wild S. crumenophthalmus and other pelagic fish. S. crumenophthalmus are a small pelagic carangid fish of circumtropical distribution. Larvae were reared in a modified mesocosm system and sampled daily for growth. Larvae grew to a mean size of 4.74 cm (Standard Length) and 1.30 g by 45 days post hatch (dph). Larval length-at-age was best described by the exponential equation Y = 1.966e(0.0704t) . For juvenile growth trials, 1940 fish were stocked into four 2.5 m(3) cylindro-conical tanks at two different densities (262 fish m(-3) and 120 fish m(-3)) and reared from 45 dph to subadult stage. Fish were sampled daily for growth. No statistically significant differences in growth or survival were detected between tanks. Mean length and weight at 141 dph was 13.24 cm (Total Length) and 25.20 g. Juvenile length-at-age was best described by the Von Bertalanffy Growth Model equation L t = 27.75(1 - e(-0.03(t-1.57))). Weight-at-age was best described by a linear equation W t = 1.7313x + 12.4662. The exponent of the length-weight equation was 3.14. In addition to providing the first published description of larviculture and juvenile growout techniques for S. crumenophthalmus, this study contains the first published data on this species' larval growth and directly confirms estimates of S. crumenophthalmus juvenile growth done by other researchers using indirect techniques such as otolith daily growth increment and frequency distribution analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA