Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Fluids ; 65(2): 20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313751

RESUMO

In this work, we study the jetting dynamics of individual cavitation bubbles using x-ray holographic imaging and high-speed optical shadowgraphy. The bubbles are induced by a focused infrared laser pulse in water near the surface of a flat, circular glass plate, and later probed with ultrashort x-ray pulses produced by an x-ray free-electron laser (XFEL). The holographic imaging can reveal essential information of the bubble interior that would otherwise not be accessible in the optical regime due to obscuration or diffraction. The influence of asymmetric boundary conditions on the jet's characteristics is analysed for cases where the axial symmetry is perturbed and curved liquid filaments can form inside the cavity. The x-ray images demonstrate that when oblique jets impact the rigid boundary, they produce a non-axisymmetric splash which grows from a moving stagnation point. Additionally, the images reveal the formation of complex gas/liquid structures inside the jetting bubbles that are invisible to standard optical microscopy. The experimental results are analysed with the assistance of full three-dimensional numerical simulations of the Navier-Stokes equations in their compressible formulation, which allow a deeper understanding of the distinctive features observed in the x-ray holographic images. In particular, the effects of varying the dimensionless stand-off distances measured from the initial bubble location to the surface of the solid plate and also to its nearest edge are addressed using both experiments and simulations. A relation between the jet tilting angle and the dimensionless bubble position asymmetry is derived. The present study provides new insights into bubble jetting and demonstrates the potential of x-ray holography for future investigations in this field. Supplementary Information: The online version contains supplementary material available at 10.1007/s00348-023-03759-9.

2.
J Synchrotron Radiat ; 30(Pt 4): 788-795, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233735

RESUMO

A sample environment and manipulation tool is presented for single-particle X-ray experiments in an aqueous environment. The system is based on a single water droplet, positioned on a substrate that is structured by a hydrophobic and hydrophilic pattern to stabilize the droplet position. The substrate can support several droplets at a time. Evaporation is prevented by covering the droplet by a thin film of mineral oil. In this windowless fluid which minimizes background signal, single particles can be probed and manipulated by micropipettes, which can easily be inserted and steered in the droplet. Holographic X-ray imaging is shown to be well suited to observe and monitor the pipettes, as well as the droplet surface and the particles. Aspiration and force generation are also enabled based on an application of controlled pressure differences. Experimental challenges are addressed and first results are presented, obtained at two different undulator endstations with nano-focused beams. Finally, the sample environment is discussed in view of future coherent imaging and diffraction experiments with synchrotron radiation and single X-ray free-electron laser pulses.


Assuntos
Holografia , Lasers , Raios X , Radiografia , Síncrotrons , Água/química , Difração de Raios X
3.
J Synchrotron Radiat ; 28(Pt 3): 987-994, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950007

RESUMO

Single-pulse holographic imaging at XFEL sources with 1012 photons delivered in pulses shorter than 100 fs reveal new quantitative insights into fast phenomena. Here, a timing and synchronization scheme for stroboscopic imaging and quantitative analysis of fast phenomena on time scales (sub-ns) and length-scales (≲100 nm) inaccessible by visible light is reported. A fully electronic delay-and-trigger system has been implemented at the MID station at the European XFEL, and applied to the study of emerging laser-driven cavitation bubbles in water. Synchronization and timing precision have been characterized to be better than 1 ns.

4.
J Synchrotron Radiat ; 28(Pt 1): 52-63, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399552

RESUMO

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA