RESUMO
Very short chemical exchange saturation transfer (CEST) pulses are beneficial in cardiac continuous wave (cw) CEST MRI, especially in small animals because of their rapid heartbeat; however, they result in signal modulations caused by Rabi oscillations. Therefore, we implemented two different filter techniques, DOwnsampling by SEparation of CEST spectrum into two parts (DOSE) and time domain (TD)-based filtering, to correct for these signal corruptions, allowing a reliable quantification of glucose-weighted CEST (glucoCEST) MRI contrast. In our study, cw CEST measurements were performed on a 9.4-T small animal BioSpec system using CEST pulses in the range of 10 to 200 ms. Experimental dependencies of Rabi oscillations on key MRI parameters were validated by Bloch-McConnell (BM) simulations. Filter efficiency was explored in a glucose concentration series as well as in the myocardium of healthy mice (n = 8), and glucoCEST contrast was subsequently quantified. The experimental results showed that the impact of Rabi oscillations on CEST spectra increased with decreasing CEST pulse length, optimized B0 homogeneity, and shorter T2 relaxation time, in accordance with results from BM simulations. Both investigated filter techniques reduced these signal modulations significantly, with DOSE filtering preserving the amplitude and TD filtering the spectral information of CEST data more accurately. Upon filter application, a significant decrease in glucoCEST contrast in the myocardium of healthy mice was observed after glucose infusion (pTD = 0.0079, pDOSE = 0.0044). To conclude, this study offers comprehensive experimental insights into Rabi oscillations within CEST MRI data along with methodological considerations that could be further advanced into a robust and precise cardiac cw CEST protocol by integrating DOSE and TD filtering into the standard CEST analysis pipeline.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Camundongos , Animais , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Concentração de Íons de Hidrogênio , GlucoseRESUMO
BACKGROUND: With metabolic alterations of the tumor microenvironment (TME) contributing to cancer progression, metastatic spread and response to targeted therapies, non-invasive and repetitive imaging of tumor metabolism is of major importance. The purpose of this study was to investigate whether multiparametric chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) allows to detect differences in the metabolic profiles of the TME in murine breast cancer models with divergent degrees of malignancy and to assess their response to immunotherapy. METHODS: Tumor characteristics of highly malignant 4T1 and low malignant 67NR murine breast cancer models were investigated, and their changes during tumor progression and immune checkpoint inhibitor (ICI) treatment were evaluated. For simultaneous analysis of different metabolites, multiparametric CEST-MRI with calculation of asymmetric magnetization transfer ratio (MTRasym) at 1.2 to 2.0 ppm for glucose-weighted, 2.0 ppm for creatine-weighted and 3.2 to 3.6 ppm for amide proton transfer- (APT-) weighted CEST contrast was conducted. Ex vivo validation of MRI results was achieved by 1H nuclear magnetic resonance spectroscopy, matrix-assisted laser desorption/ionization mass spectrometry imaging with laser postionization and immunohistochemistry. RESULTS: During tumor progression, the two tumor models showed divergent trends for all examined CEST contrasts: While glucose- and APT-weighted CEST contrast decreased and creatine-weighted CEST contrast increased over time in the 4T1 model, 67NR tumors exhibited increased glucose- and APT-weighted CEST contrast during disease progression, accompanied by decreased creatine-weighted CEST contrast. Already three days after treatment initiation, CEST contrasts captured response to ICI therapy in both tumor models. CONCLUSION: Multiparametric CEST-MRI enables non-invasive assessment of metabolic signatures of the TME, allowing both for estimation of the degree of tumor malignancy and for assessment of early response to immune checkpoint inhibition.
Assuntos
Creatina , Neoplasias , Animais , Camundongos , Imunoterapia , Imageamento por Ressonância Magnética , Amidas , Glucose , Inibidores de Checkpoint ImunológicoRESUMO
Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Osteomielite/patologia , Modelos Animais de Doenças , Inflamação , Infecções Estafilocócicas/microbiologia , Infecção PersistenteRESUMO
BACKGROUND: Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS: Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS: Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION: DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
Assuntos
Neoplasias , Animais , Camundongos , Sorafenibe , Imunoterapia , Albuminas , Cognição , Microambiente TumoralRESUMO
BACKGROUND: Preventing sepsis-associated acute kidney injury (S-AKI) can be challenging because it develops rapidly and is often asymptomatic. Probability assessment of disease progression for therapeutic follow-up and outcome are important to intervene and prevent further damage. PURPOSE: To establish a noninvasive multiparametric MRI (mpMRI) tool, including T1 , T2 , and perfusion mapping, for probability assessment of the outcome of S-AKI. STUDY TYPE: Preclinical randomized prospective study. ANIMAL MODEL: One hundred and forty adult female SD rats (65 control and 75 sepsis). FIELD STRENGTH/SEQUENCE: 9.4T; T1 and perfusion map (FAIR-EPI) and T2 map (multiecho RARE). ASSESSMENT: Experiment 1: To identify renal injury in relation to sepsis severity, serum creatinine levels were determined (31 control and 35 sepsis). Experiment 2: Animals underwent mpMRI (T1 , T2 , perfusion) 18 hours postsepsis. A subgroup of animals was immediately sacrificed for histology examination (nine control and seven sepsis). Result of mpMRI in follow-up subgroup (25 control and 33 sepsis) was used to predict survival outcomes at 96 hours. STATISTICAL TESTS: Mann-Whitney U test, Spearman/Pearson correlation (r), P < 0.05 was considered statistically significant. RESULTS: Severely ill septic animals exhibited significantly increased serum creatinine levels compared to controls (70 ± 30 vs. 34 ± 9 µmol/L, P < 0.0001). Cortical perfusion (480 ± 80 vs. 330 ± 140 mL/100 g tissue/min, P < 0.005), and cortical and medullary T2 relaxation time constants were significantly reduced compared to controls (41 ± 4 vs. 37 ± 5 msec in cortex, P < 0.05, 52 ± 7 vs. 45 ± 6 msec in medulla, P < 0.05). The combination of cortical T2 relaxation time constants and perfusion results at 18 hours could predict survival outcomes at 96 hours with high sensitivity (80%) and specificity (73%) (area under curve of ROC = 0.8, Jmax = 0.52). DATA CONCLUSION: This preclinical study suggests combined T2 relaxation time and perfusion mapping as first line diagnostic tool for treatment planning. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Assuntos
Injúria Renal Aguda , Sepse , Feminino , Ratos , Animais , Estudos Prospectivos , Creatinina , Ratos Sprague-Dawley , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/patologia , Imageamento por Ressonância Magnética , Perfusão , Sepse/complicações , Sepse/diagnóstico por imagemRESUMO
BACKGROUND: The inflammatory tumor microenvironment (TME) is formed by various immune cells, being closely associated with tumorigenesis. Especially, the interaction between tumor-infiltrating T-cells and macrophages has a crucial impact on tumor progression and metastatic spread. The purpose of this study was to investigate whether oscillating-gradient diffusion-weighted MRI (OGSE-DWI) enables a cell size-based discrimination between different cell populations of the TME. METHODS: Sine-shaped OGSE-DWI was combined with the Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) approach to measure microscale diffusion distances, here relating to cell sizes. The accuracy of IMPULSED-derived cell radii was evaluated using in vitro spheroid models, consisting of either pure cancer cells, macrophages, or T-cells. Subsequently, in vivo experiments aimed to assess changes within the TME and its specific immune cell composition in syngeneic murine breast cancer models with divergent degrees of malignancy (4T1, 67NR) during tumor progression, clodronate liposome-mediated depletion of macrophages, and immune checkpoint inhibitor (ICI) treatment. Ex vivo analysis of IMPULSED-derived cell radii was conducted by immunohistochemical wheat germ agglutinin staining of cell membranes, while intratumoral immune cell composition was analyzed by CD3 and F4/80 co-staining. RESULTS: OGSE-DWI detected mean cell radii of 8.8±1.3 µm for 4T1, 8.2±1.4 µm for 67NR, 13.0±1.7 for macrophage, and 3.8±1.8 µm for T-cell spheroids. While T-cell infiltration during progression of 4T1 tumors was observed by decreasing mean cell radii from 9.7±1.0 to 5.0±1.5 µm, increasing amount of intratumoral macrophages during progression of 67NR tumors resulted in increasing mean cell radii from 8.9±1.2 to 12.5±1.1 µm. After macrophage depletion, mean cell radii decreased from 6.3±1.7 to 4.4±0.5 µm. T-cell infiltration after ICI treatment was captured by decreasing mean cell radii in both tumor models, with more pronounced effects in the 67NR tumor model. CONCLUSIONS: OGSE-DWI provides a versatile tool for non-invasive profiling of the inflammatory TME by assessing the dominating cell type T-cells or macrophages.
Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Camundongos , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Linfócitos T , MacrófagosRESUMO
Viral myocarditis is pathologically associated with RNA viruses such as coxsackievirus B3 (CVB3), or more recently, with SARS-CoV-2, but despite intensive research, clinically proven treatment is limited. Here, by use of a transgenic mouse strain (TG) containing a CVB3ΔVP0 genome we unravel virus-mediated cardiac pathophysiological processes in vivo and in vitro. Cardiac function, pathologic ECG alterations, calcium homeostasis, intracellular organization and gene expression were significantly altered in transgenic mice. A marked alteration of mitochondrial structure and gene expression indicates mitochondrial impairment potentially contributing to cardiac contractile dysfunction. An extended picture on viral myocarditis emerges that may help to develop new treatment strategies and to counter cardiac failure.
Assuntos
COVID-19 , Infecções por Coxsackievirus , Miocardite , Viroses , Camundongos , Animais , Camundongos Transgênicos , Enterovirus Humano B , SARS-CoV-2RESUMO
Objective: The objective of this study was to non-invasively differentiate the degree of malignancy in two murine breast cancer models based on identification of distinct tissue characteristics in a metastatic and non-metastatic tumor model using a multiparametric Magnetic Resonance Imaging (MRI) approach. Methods: The highly metastatic 4T1 breast cancer model was compared to the non-metastatic 67NR model. Imaging was conducted on a 9.4 T small animal MRI. The protocol was used to characterize tumors regarding their structural composition, including heterogeneity, intratumoral edema and hemorrhage, as well as endothelial permeability using apparent diffusion coefficient (ADC), T1/T2 mapping and dynamic contrast-enhanced (DCE) imaging. Mice were assessed on either day three, six or nine, with an i.v. injection of the albumin-binding contrast agent gadofosveset. Ex vivo validation of the results was performed with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), histology, immunhistochemistry and electron microscopy. Results: Significant differences in tumor composition were observed over time and between 4T1 and 67NR tumors. 4T1 tumors showed distorted blood vessels with a thin endothelial layer, resulting in a slower increase in signal intensity after injection of the contrast agent. Higher permeability was further reflected in higher Ktrans values, with consecutive retention of gadolinium in the tumor interstitium visible in MRI. 67NR tumors exhibited blood vessels with a thicker and more intact endothelial layer, resulting in higher peak enhancement, as well as higher maximum slope and area under the curve, but also a visible wash-out of the contrast agent and thus lower Ktrans values. A decreasing accumulation of gadolinium during tumor progression was also visible in both models in LA-ICP-MS. Tissue composition of 4T1 tumors was more heterogeneous, with intratumoral hemorrhage and necrosis and corresponding higher T1 and T2 relaxation times, while 67NR tumors mainly consisted of densely packed tumor cells. Histogram analysis of ADC showed higher values of mean ADC, histogram kurtosis, range and the 90th percentile (p90), as markers for the heterogenous structural composition of 4T1 tumors. Principal component analysis (PCA) discriminated well between the two tumor models. Conclusions: Multiparametric MRI as presented in this study enables for the estimation of malignant potential in the two studied tumor models via the assessment of certain tumor features over time.
RESUMO
The process of mutarotation of sugars caused by a balanced reaction between their corresponding α and ß isomers, has been known for almost 200â¯years. Still, it remains essential in modern biochemical research, as enzymatic reactions catalyzed by mutarotases are crucial for various pathways in the energy metabolism. In our study a fast magnetic resonance technique based on chemical exchange saturation transfer (CEST) line scanning (LS) was implemented as a method to measure mutarotation kinetics on a 9.4â¯T small animal MRI scanner. As proof of concept, the isomeric conversion of two hexoses (glucose and galactose) and pentoses (xylose and arabinose) was investigated in an aqueous solution over time. The technique allowed for ultrafast data acquisition without the implementation of complicated encoding schemes and acceleration procedures. Thus, CEST LS provided complete CEST spectra with a frequency step size of 19.6â¯Hz in less than one minute. For the mutarotation analysis, CEST spectra were acquired over a time duration of four hours and analyzed with four established CEST quantification approaches - based on either asymmetry of CEST spectra or a multi-pool Lorentzian fit. The isomer ratios of the different sugars at equilibrium were determined with an overall accuracy of 94â¯%, using an adapted 2-side chemical exchange (CE) model. The estimated mutarotation rate constants at 22⯰C were in good agreement with conventionally measured reference values, derived from optical and spectroscopic techniques.
Assuntos
Imageamento por Ressonância Magnética , Água , Animais , Cinética , Imageamento por Ressonância Magnética/métodos , Açúcares , Água/químicaRESUMO
Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.
Assuntos
Osteomielite , Staphylococcus aureus , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Prostaglandina-E Sintases/metabolismo , Receptores Depuradores Classe E , Ácidos TeicoicosRESUMO
Staphylococcus aureus-induced infective endocarditis (IE) is a life-threatening disease. Differences in virulence between distinct S. aureus strains, which are partly based on the molecular mechanisms during bacterial adhesion, are not fully understood. Yet, distinct molecular or elemental patterns, occurring during specific steps in the adhesion process, may help to identify novel targets for accelerated diagnosis or improved treatment. Here, we use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of post-mortem tissue slices of an established mouse model of IE to obtain fingerprints of element distributions in infected aortic valve tissue. Three S. aureus strains with different virulence due to deficiency in distinct adhesion molecules (fibronectin-binding protein A and staphylococcal protein A) were used to assess strain-specific patterns. Data analysis was performed by t-distributed stochastic neighbor embedding (t-SNE) of mass spectrometry imaging data, using manual reference tissue classification in histological specimens. This procedure allowed for obtaining distinct element patterns in infected tissue for all three bacterial strains and for comparing those to patterns observed in healthy mice or after sterile inflammation of the valve. In tissue from infected mice, increased concentrations of calcium, zinc, and magnesium were observed compared to noninfected mice. Between S. aureus strains, pronounced variations were observed for manganese. The presented approach is sensitive for detection of S. aureus infection. For strain-specific tissue characterization, however, further improvements such as establishing a database with elemental fingerprints may be required.
Assuntos
Endocardite Bacteriana , Endocardite , Infecções Estafilocócicas , Animais , Endocardite Bacteriana/microbiologia , Espectrometria de Massas/métodos , Camundongos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismoRESUMO
To evaluate potential pathomechanisms in the induction of infective endocarditis (IE), 34 Staphylococcus aureus (S. aureus) isolates, collected from patients with S. aureus endocarditis and from healthy individuals were investigated both in vitro and in vivo. S. aureus isolates were tested in vitro for their cytotoxicity, invasion and the association with platelets. Virulence factor expression profiles and cellular response were additionally investigated and tested for correlation with the ability of S. aureus to induce vegetations on the aortic valves in vivo. In an animal model of IE valvular conspicuity was assessed by in vivo magnetic resonance imaging at 9.4 T, histology and enrichment gene expression analysis. All S. aureus isolates tested in vivo caused a reliable infection and inflammation of the aortic valves, but could not be differentiated and categorized according to the measured in vitro virulence profiles and cytotoxicity. Results from in vitro assays did not correlate with the severity of IE. However, the isolates differed substantially in the activation and inhibition of pathways connected to the extracellular matrix and inflammatory response. Thus, comprehensive approaches of host-pathogen interactions and corresponding immune pathways are needed for the evaluation of the pathogenic capacity of bacteria. An improved understanding of the interaction between virulence factors and immune response in S. aureus infective endocarditis would offer novel possibilities for the development of therapeutic strategies and specific diagnostic imaging markers.
Assuntos
Endocardite Bacteriana , Interações Hospedeiro-Patógeno , Infecções Estafilocócicas , Animais , Endocardite Bacteriana/imunologia , Humanos , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Fatores de Virulência/genéticaRESUMO
(1) Background: Pulmonary arterial hypertension (PAH) is a serious condition that is associated with many cardiopulmonary diseases. Invasive right heart catheterization (RHC) is currently the only method for the definitive diagnosis and follow-up of PAH. In this study, we sought a non-invasive hemodynamic biomarker for the diagnosis of PAH. (2) Methods: We applied prospectively respiratory and cardiac gated 4D-flow MRI at a 9.4T preclinical scanner on three different groups of Sprague Dawley rats: baseline (n = 11), moderate PAH (n = 8), and severe PAH (n = 8). The pressure gradients as well as the velocity values were analyzed from 4D-flow data and correlated with lung histology. (3) Results: The pressure gradient between the pulmonary artery and vein on the unilateral side as well as the time-averaged mean velocity values of the small pulmonary arteries were capable of distinguishing not only between baseline and severe PAH, but also between the moderate and severe stages of the disease. (4) Conclusions: The current preclinical study suggests the pulmonary arteriovenous pressure gradient and the time-averaged mean velocity as potential biomarkers to diagnose PAH.
RESUMO
Over the last years, murine in vivo magnetic resonance imaging (MRI) contributed to a new understanding of tissue composition, regeneration and diseases. Due to artefacts generated by the currently used metal implants, MRI is limited in fracture healing research so far. In this study, we investigated a novel MRI-compatible, ceramic intramedullary fracture implant during bone regeneration in mice. Three-point-bending revealed a higher stiffness of the ceramic material compared to the metal implants. Electron microscopy displayed a rough surface of the ceramic implant that was comparable to standard metal devices and allowed cell attachment and growth of osteoblastic cells. MicroCT-imaging illustrated the development of the callus around the fracture site indicating a regular progressing healing process when using the novel implant. In MRI, different callus tissues and the implant could clearly be distinguished from each other without any artefacts. Monitoring fracture healing using MRI-compatible implants will improve our knowledge of callus tissue regeneration by 3D insights longitudinal in the same living organism, which might also help to reduce the consumption of animals for future fracture healing studies, significantly. Finally, this study may be translated into clinical application to improve our knowledge about human bone regeneration.
Assuntos
Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Animais , Parafusos Ósseos , Interface Osso-Implante , Cerâmica , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/fisiopatologia , Fixação Intramedular de Fraturas , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica de Varredura , ZircônioRESUMO
Animal models of Staphylococcus aureus infective endocarditis (IE), especially in rodents, are commonly used to investigate the underlying pathogenesis, disease progression, potential diagnostic approaches, and therapeutic treatment. All these models are based on surgical interventions, and imply valve trauma by placing a polyurethane catheter at the aortic root. While the influence of endothelial damage and inflammation on the induction of IE has been studied intensively, the role of the catheter, as permanent source of bacteremia, and the interplay with bacterial virulence factors during the formation of IE is poorly understood. In our study, we aimed at identifying which set of preconditions is required for induction and formation of IE: (1) tissue injury, (2) permanent presence of bacteria, and (3) presence of the full bacterial repertoire of adhesion proteins. We investigated the manifestation of the disease in different modifications of the animal model, considering different degrees of endothelial damage and the presence or absence of the catheter. In four infection models the induction of IE was assessed by using two bacterial strains with different expression patterns of virulence factors - S. aureus 6850 and Newman. In vivo magnetic resonance imaging showed conspicuous morphological structures on the aortic valves, when an endothelial damage and a continuous bacterial source were present simultaneously. Cellular and inflammatory pathophysiology were characterized additionally by histology, real-time quantitative polymerase chain reaction analysis, and bacterial counts, revealing strain-specific pathogenesis and manifestation of IE, crucially influenced by bacterial adherence and toxicity. The severity of IE was dependent on the degree of endothelial irritation. However, even severe endothelial damage in the absence of a permanent bacterial source resulted in reduced valve infection. The spread of bacteria to other organs was also dependent on the pathogenic profile of the infectious agent.
RESUMO
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. Despite effective immunosuppressants, acute allograft rejections pose a major threat to graft survival. In early stages, acute rejections are still potentially reversible, and early detection is crucial to initiate the necessary treatment options and to prevent further graft dysfunction or even loss of the complete graft. Currently, invasive core needle biopsy is the reference standard to diagnose acute rejection. However, biopsies carry the risk of graft injuries and cannot be immediately performed on patients receiving anticoagulation drugs. Therefore, non-invasive assessment of the whole organ for specific and rapid detection of acute allograft rejection is desirable. We herein provide a review summarizing current imaging-based approaches for non-invasive diagnosis of acute renal allograft rejection.
RESUMO
To date, allogeneic kidney transplantation remains the best available therapeutic option for patients with end-stage renal disease regarding overall survival and quality of life. Despite the advancements in immunosuppressive drugs and protocols, episodes of acute allograft rejection, a sterile inflammatory process, continue to endanger allograft survival. Since effective treatment for acute rejection episodes is available, instant diagnosis of this potentially reversible graft injury is imperative. Although histological examination by invasive core needle biopsy of the graft remains the gold standard for the diagnosis of ongoing rejection, it is always associated with the risk of causing substantial graft injury as a result of the biopsy procedure itself. At the same time, biopsies are not immediately feasible for a considerable number of patients taking anticoagulants due to the high risk of complications such as bleeding and uneven distribution of pathological changes within the graft. This can result in the wrong diagnosis due to the small size of the tissue sample taken. Therefore, there is a need for a tool that overcomes these problems by being noninvasive and capable of assessing the whole organ at the same time for specific and fast detection of acute allograft rejection. In this article, we review current state-of-the-art approaches for noninvasive diagnostics of acute renal transplant inflammation, i.e., rejection. We especially focus on nonradiation-based methods using magnetic resonance imaging (MRI) and ultrasound.
Assuntos
Rejeição de Enxerto/diagnóstico por imagem , Transplante de Rim/efeitos adversos , Imageamento por Ressonância Magnética , Ultrassonografia , Rejeição de Enxerto/fisiopatologia , Humanos , Rim/diagnóstico por imagem , Rim/fisiopatologia , Transplante Homólogo/efeitos adversosRESUMO
OBJECTIVE: The ferritin heavy/heart chain (FTH) gene encodes the ferroxidase component of the iron (Fe) sequestering ferritin complex, which plays a central role in the regulation of cellular Fe metabolism. Here we tested the hypothesis that ferritin regulates organismal Fe metabolism in a manner that impacts energy balance and thermal homeostasis. METHODS: We developed a mouse strain, referred herein as FthR26 fl/fl, expressing a tamoxifen-inducible Cre recombinase under the control of the Rosa26 (R26) promoter and carrying two LoxP (fl) sites: one at the 5'end of the Fth promoter and another the 3' end of the first Fth exon. Tamoxifen administration induces global deletion of Fth in adult FthR26Δ/Δ mice, testing whether FTH is required for maintenance of organismal homeostasis. RESULTS: Under standard nutritional Fe supply, Fth deletion in adult FthR26Δ/Δ mice led to a profound deregulation of organismal Fe metabolism, oxidative stress, inflammation, and multi-organ damage, culminating in death. Unexpectedly, Fth deletion was also associated with a profound atrophy of white and brown adipose tissue as well as with collapse of energy expenditure and thermogenesis. This was attributed mechanistically to mitochondrial dysfunction, as assessed in the liver and in adipose tissue. CONCLUSION: The FTH component of ferritin acts as a master regulator of organismal Fe homeostasis, coupling nutritional Fe supply to organismal redox homeostasis, energy expenditure and thermoregulation.
Assuntos
Metabolismo Energético , Ferritinas/metabolismo , Termogênese , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Ferritinas/genética , Deleção de Genes , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse OxidativoRESUMO
Staphylococcus aureus colonizes epithelial surfaces, but it can also cause severe infections. The aim of this work was to investigate whether bacterial virulence correlates with defined types of tissue infections. For this, we collected 10â»12 clinical S. aureus strains each from nasal colonization, and from patients with endoprosthesis infection, hematogenous osteomyelitis, and sepsis. All strains were characterized by genotypic analysis, and by the expression of virulence factors. The hostâ»pathogen interaction was studied through several functional assays in osteoblast cultures. Additionally, selected strains were tested in a murine sepsis/osteomyelitis model. We did not find characteristic bacterial features for the defined infection types; rather, a wide range in all strain collections regarding cytotoxicity and invasiveness was observed. Interestingly, all strains were able to persist and to form small colony variants (SCVs). However, the low-cytotoxicity strains survived in higher numbers, and were less efficiently cleared by the host than the highly cytotoxic strains. In summary, our results indicate that not only destructive, but also low-cytotoxicity strains are able to induce infections. The low-cytotoxicity strains can successfully survive, and are less efficiently cleared from the host than the highly cytotoxic strains, which represent a source for chronic infections. The understanding of this interplay/evolution between the host and the pathogen during infection, with specific attention towards low-cytotoxicity isolates, will help to optimize treatment strategies for invasive and therapy-refractory infection courses.